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Abstract

Gallium, a metal with antineoplastic activity, binds transferrin
(Tf) and enters tumor cells via Tf receptor1 (TfR1); it disrupts iron
homeostasis leading to cell death. We hypothesized that TfR1 on
brain microvascular endothelial cells (BMEC) would facilitate Tf-
Ga transport into the brain enabling it to target TfR-bearing
glioblastoma. We show that U-87 MG and D54 glioblastoma
cell lines andmultiple glioblastoma stem cell (GSC) lines express
TfRs, and that their growth is inhibited by gallium maltolate
(GaM) in vitro. After 24 hours of incubation with GaM, cells
displayed a loss of mitochondrial reserve capacity followed by a
dose-dependent decrease in oxygen consumption and a decrease
in the activity of the iron-dependentM2 subunit of ribonucleotide
reductase (RRM2). IHC staining of rat and human tumor-bearing
brains showed that glioblastoma, but not normal glial cells,

expressed TfR1 and RRM2, and that glioblastoma expressed
greater levels of H- and L-ferritin than normal brain. In an
orthotopic U-87 MG glioblastoma xenograft rat model, GaM
retarded the growth of brain tumors relative to untreated control
(P ¼ 0.0159) and reduced tumor mitotic figures (P ¼ 0.045).
Tumors in GaM-treated animals displayed an upregulation of
TfR1 expression relative to control animals, thus indicating that
gallium produced tumor iron deprivation. GaM also inhibited
iron uptake and upregulated TfR1 expression in U-87 MG and
D54 cells in vitro.We conclude that GaM enters the brain via TfR1
on BMECs and targets iron metabolism in glioblastoma in vivo,
thus inhibiting tumor growth. Further development of novel
gallium compounds for brain tumor treatment is warranted. Mol
Cancer Ther; 1–11. �2018 AACR.

Introduction
Glioblastoma is a primary brain tumor with a dire prognosis.

Despite treatment, the median survival of patients with this
disease is 14.6 months; few patients survive beyond 2 years from
diagnosis (1). The need to develop new therapies for this malig-
nancy is obvious. In this regard, drugs directed at disrupting
pathways involved in tumor growth are emerging (2). Recent
evidence indicates that iron metabolism and iron-dependent
tumor growth are promising targets for cancer treatment as tumor
cells have an increased demand for iron to support ribonucleotide
reductase activity andmitochondrial function (3).Moreover, iron
is required for the activity of certain cyclins and for signaling
through the mTOR and WNT pathways (4). A change in the

balance of proteins that regulate the cellular intake, storage, and
export of iron [transferrin receptor (TfR1), ferritin, and ferropor-
tin, and hepcidin, respectively] in tumors leads to an expanded
intracellular iron pool to support iron-dependent malignant cell
growth (5). It has been shown that iron homeostasis and iron
transport are altered in brain tumors relative to nonmalignant
cells (6, 7). Iron, as Tf-Fe, enters the brain by TfRs present on the
luminal surface of brain microvascular endothelial cells (BMEC)
of the blood–brain barrier (BBB; ref. 8).

Gallium nitrate, a simple metal salt that targets iron metabo-
lism, has clinical antineoplastic activity in bladder cancer and
lymphoma (9). It shares certain chemical properties with iron that
enables its binding to transferrin (Tf), the transport protein for
iron in the circulation (10). Gallium enters cells via TfR1-medi-
ated endocytosis and blocks TfR1-mediated uptake of Tf iron by
cells (11).Within the cell, galliumdisrupts iron-dependent tumor
growth and induces cell death (11).

The antineoplastic activity of gallium nitrate has prompted
the development of newer gallium compounds with complex
ligand structures. These agents hold the promise of greater
clinical efficacy and fewer side-effects (9). For example, gallium
maltolate [(tris-hydroxy-2-methyl-4H-pyran-4-onato)gallium]
(GaM) displays greater cytotoxicity than gallium nitrate in
lymphoma cell lines and inhibits the growth of lymphoma
cells that are resistant to the cytotoxicity of gallium nitrate (12).
GaM also inhibits the growth of human T-cell lymphoma
xenografts in nude mice confirming its antitumor activity both
in vitro and in vivo (13).
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Glioblastomas have a high requirement for iron (14). As iron is
taken up by cells through TfR1-mediated endocytosis and TfRs are
highly expressed on the surface of glioblastoma cells (15), target-
ing cellular ironmetabolism represents an attractive intervention-
al strategy in glioblastoma therapy. Considering that gallium uses
the transport and cellular uptake systems for iron, we hypothe-
sized that GaM can cross the BBB via TfRs on BMECs and target
TfR-bearing glioblastoma cells. In this study, we show that GaM
inhibits glioblastoma cell growth in vitro and in vivo. GaM's
mechanisms of action include inhibition of cellular iron uptake,
disruption of mitochondrial function, and inhibition of RRM2
activity in glioblastoma cells. These findings open the door for
further development of gallium-based compounds for glioblas-
toma treatment.

Materials and Methods
Materials

GaM was provided by Titan Pharmaceuticals. Mouse anti-
human TfR antibody (anti-CD71) and rabbit anti-rat TfR anti-
body were from Biogenex Laboratories, and ABBIOTEC, respec-
tively. Antibodies to RRM2, H- and L-ferritin, and TfR1 were
purchased from Santa Cruz Biotechnology Inc. Human Tf, 3-
(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT), oligomycin, carbonilcyanide 4-(trifluoromethoxy)phe-
nylhydrazone (FCCP), and antimycin A were obtained from
Sigma Chemical Company. Alzet mini-pumps were obtained
from Durect Corporation. 125I-Na and 55FeCl3 were purchased
from Perkin Elmer and 125I-Tf and 55Fe-Tf were prepared as
previously described (16).

Cells
Tissue culture media and supplements were purchased from

Life Technologies, unless stated otherwise. All cell lines used were
validated at their point of origin. Human glioblastoma U-87 MG
and D54 cell lines were obtained from ATCC and courtesy of Dr.
D. Bigner (DukeUniversityMedical Center,Durham,NC), respec-
tively. The U-87 MG cells were grown in MEM with Earle's salts
fortified with 10% FBS, and supplemented with 1% sodium
pyruvate and0.1%gentamicin.D54 cellswere grown in improved
MEMwith Zn option, fortified with 10% FBS, and supplemented
with 0.1 % gentamicin. Human BMECs were a generous gift from
Dr. Daniel Kosman (University of Buffalo, Buffalo, NY) and have
been described previously (17). The glioblastoma stem cells
(GSC) were developed from human glioblastoma and were
authenticated, as described previously (18). Experiments were
conducted with GSC lines designated GSC-22, GSC-33, and GSC-
44. These cells were maintained as neurospheres in a serum-free
stem cell culture medium (18, 19).

Interaction of transferrin with GaM
The interaction of Tf with GaM was examined by UV–Vis

spectroscopy, as described by Harris and Pecoraro (10). Individ-
ual absorbance spectra of human Tf (12.5 mmol/L) and GaM (25
mmol/L) in water were obtained using a Varioskan Flash Spectral
ScanningMultimode Reader (Thermo Fisher Scientific Inc.). GaM
was added incrementally to the Tf-containing cuvette to achieve
final Ga concentrations of 25, 50, and 100 mmol/L, respectively.
Absorbance spectra were obtained at room temperature for 10
minutes after the addition of each concentration of GaM to the
cuvette.

Cellular Tf binding and internalization
25I-Tf–specific binding to intact cells was measured as reported

previously (20). For Tf internalization kinetics, cells were first
incubated at 4�C to allow for 125I-Tf binding to cell surface TfR1
and then washed to remove unbound 125I-Tf. Warm medium
(37�C) was added to the cells to initiate TfR1 cycling and the
fraction of acid-resistant, cell-associated 125I-Tf (representing
internalized 125I-Tf) was measured at different time points.

Cellular proliferation
The effect of GaM on cell proliferation was measured by MTT

cytotoxicity assay in 96-well microwell plates using an ELX 808
Ultra Microplate Autoreader (Biotech Instruments; ref. 12).

Cellular bioenergetics
The effect of GaM on cellular bioenergetic function was

assessed by measuring the oxygen consumption rate (OCR, a
measure of oxidative phosphorylation) in intact cells using a
Seahorse 96XF Analyzer (Agilent Technologies), according to the
manufacturer's directions. Seahorse XF analyzer methodology is
reviewed by Dranka and colleagues (21). D54 cells were plated in
freshmedium in a 96-well plate (104 cells per well) and incubated
without additives at 37�C in a CO2 incubator. After 24 hours of
incubation, various concentrations of GaM were added to the
wells and the incubation continued for an additional 24 hours.
The plate was transferred to an XF Analyzer and basal OCR was
measured at three timepoints. This was followed by sequential
additions of oligomycin (1mg/mL), FCCP (1mmol/L), and anti-
mycin A (10 mmol/L).

Electron paramagnetic resonance spectroscopy
X-band electron paramagnetic resonance spectroscopy (EPR)

spectra of U-87 MG cells incubated without or with 100 mmol/L
GaM for 24 hours were obtained at 110 K with a Bruker EMX
spectrometer located at the Nation Biomedical EPR Center at the
Medical College of Wisconsin (Milwaukee, WI). EPR spectra were
collected as described previously by us (22).

IHC analysis
TfR1, H-ferritin, L-ferritin, and RRM2 expression in normal

brain and glioblastoma, and TfR1 expression in human brain
microvascular endothelial cells were examined by IHC staining
of tissue samples from surgically resected glioblastoma tumors
from patients or from animal experiments. Dead cells in tumor
xenografts in GaM-treated animals were identified according to
the typical nuclear morphologic changes: pyknosis (nuclear
condensation), karyorhexis (nuclear fragmentation), and kar-
yolysis (complete dissolution of the nuclear fragments). Per-
centage of dead cells was calculated out of a total of 1,000 cells
(viable and dead) counted. Human tissue was obtained from
the Brain and Spinal Cord Tissue Bank of the Medical College of
Wisconsin (Milwaukee, WI). IHC staining with specific primary
antibodies was performed on a Dako Autostainer Plus Instru-
ment using the Dako EnVision FLEX High pH Detection
Kit protocol. Stained slides were visualized using a Nikon
Eclipse 80i microscope equipped with a MicroPublisher 3.3
RTV color video camera (Q Imaging). The images were captured
using NIS elements imaging software (Version 7.0, Nikon
Instruments, Inc.).
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Western blotting
Glioblastoma cells were analyzed for the expression of H-

ferritin, L-ferritin, and RRM2 proteins by Western blotting using
standard protocols. Protein bands onmembranes were identified
by primary antibodies followed by horseradish peroxidase–
labeled secondary antibody. Membranes were developed in
Enhanced Chemiluminescence Western blotting detection solu-
tion (Amersham Life Science) and exposed to BioMax film for
autoradiography.

Animal experiments
The antineoplastic activity of GaM in vivo was examined in an

intracranial U-87MGxenograft ratmodel described previously by
us (23). All protocols were approved by the Institutional Animal
Care and Use Committee at the Medical College of Wisconsin
(Milwaukee, WI).

Male athymic rats weighing approximately 250 g were anes-
thetized with an intraperitoneal injection of ketamine (60 mg/
kg), acepromazine (0.9 mg/kg), and xylazine (6 mg/kg). Once
appropriate anesthetic depth was ascertained, the head was
immobilized in a stereotactic device. A 2.5-cm skin incision was
made along the midline over the bregma and a 1-mm burr hole
was drilled in the skull 1 mm anterior and 2 mm lateral to the
bregma on the right side (24). Using a 10-mL gas-tight syringe
(Hamilton Company), 2 � 105 U-87 MG cells were implanted
into the right frontal lobe at a depth of 3 mm relative to the dural
surface. The cells were continuously injected over 5minutes, after
which the needlewas left stationary for 5minutes and then slowly
withdrawn over an additional 5minutes. Afterwards, the skin was
closed using 3M Vetbond Tissue Adhesive (3 M Animal Care
Products).

Eight days following implantation of tumor cells, and after
baseline MRI studies were performed, rats were anesthetized
with 2% isoflurane. Using aseptic techniques, a small incision
was made over the animal's neck and sharp dissection carried
out down to the level of the jugular vein. The vein was
skeletonized and each pump's drug release catheter was
inserted and secured within the vessel lumen. A subcutaneous
pocket was dissected free to hold the implanted Alzet mini-
pump reservoir (Durect Corporation) and then the skin wound
closed with sutures.

In clinical trials of gallium nitrate, the greatest antineoplastic
activity and least toxicity were seen when the drug was adminis-
tered by continuous intravenous infusion over 5–7 consecutive
days (25). On the basis of this treatment schedule, GaM solution
or saline control was administered intravenously through the
subcutaneously implanted Alzet minipump to provide a steady
delivery of GaM. A dose of 50 mg/kg/day was chosen because
this was shown to be well tolerated without significant toxicity in
rats (26).

Tumor response after 10 days of GaM therapy was assessed by
MRI. The relative change in tumor size on MRI from initiation to
completion of GaM treatment measured using RECIST V1.1
criteria, as used in the clinic (27). The change in cerebral blood
volume (CBV) was measured as described previously (23).

Statistical analysis
Analysis was conducted on the change in tumor size and CBV

(day 18–day 8) between the control group and gallium-treated
group of animals with a level of significance as P ¼ 0.05 (Mann–
Whitney test).

Cellular 55FeTf uptake
The effect of GaM on iron uptake by U87 and D54 cells was

measured using 55FeTf, as described previously (28).

Results
Interaction of Tf with GaM, cellular TfR1 expression, and GaM
cytotoxicity in glioblastoma cells

GaM is composed of threemaltolate ligands bound to a central
gallium atom in a propeller-like arrangement (Fig. 1A; ref. 29). At
equimolar gallium concentrations, GaM proved to be more
cytotoxic to D54 glioblastoma cells than gallium nitrate (Fig.
1B). This suggests that, in contrast to gallium nitrate, lower
concentrations of gallium as GaM are needed to inhibit tumor
growth. Accordingly, GaM would be expected to display less
toxicity to normal cells than gallium nitrate.

Early studies in animals confirmed that 67Ga citrate injected
intravenously was bound entirely to Tf in the circulation (30)
and that 67Ga uptake by cells occurred primarily through cell
surface TfR1-mediated uptake of Tf-Ga (31). As the binding of
gallium to Tf alters the UV-Vis spectra for Tf (10), we examined
whether GaM interacted with Tf by measuring changes in the
individual UV-Vis spectra of Tf and GaM, and Tf mixed with
GaM. As shown in Fig. 1C, a progressive spectral shift was seen
when GaM was added to Tf at different ligand to metal ratios,
indicating an interaction between GaM and Tf. Whereas the
major shift in the spectral peak suggestive of GaM–Tf interac-
tion was seen at�280 nm, an increase in the absorbance of Tf at
240–250 nm was also noted when it was incubated with GaM.
The latter may be due to the binding of gallium (independent
of GaM) to Tf, as the formation of Tf-Ga is known to produce an
increase in the absorbance of Tf at 242 nm (10). Hence, it is
possible that in solution a small amount of gallium may
dissociate from GaM to bind Tf.

As Tf-Ga is preferentially taken up by TfR-bearing cells (11),
TfR1 expression on these cells and on BMECswas assessed by 125I-
Tf-TfR binding assay. As shown in Fig. 1D, bothD54 andU-87MG
cells expressed higher levels of specific Tf binding relative to
BMECs, which displayed 63%–65% lower Tf binding. These
results suggest that TfRson glioblastoma cells canbepreferentially
targeted by Tf-Ga.

To mimic the treatment schedule of gallium nitrate used in
clinical trialswhere the drug is administered continuously for 5–7
days (25), GaMwas incubated with human glioblastoma cells for
5 days and the effect on cell proliferation examined. As shown in
the dose–response curves in Fig. 1E, GaM inhibited the growth of
glioblastoma cells in a dose-dependentmanner. In contrast, it was
not cytotoxic to human BMECs, thus illustrating a significant
differential in GaM's cytotoxicity toward glioblastoma when
compared with normal cells. Maltol alone did not inhibit cell
proliferation (Fig. 1E). GaM-induced cell death was confirmed by
direct visualization of cells (Fig. 1F). D54 cells incubated with 50
and 100 mmol/LGaM for 48 and 96hours displayedmorphologic
changes of nuclear condensation and cellular fragmentation
consistent with cell death (Fig. 1F, b and c, e and f) compared
with control cells that grew normally (Fig. 1F, a and d). In other
experiments, the GaM-containing culture medium was removed
from the wells after 5 days of incubation and replaced with fresh
medium lacking GaM. Incubation was then continued for an
additional 5 days and cell growth assessed. Under these condi-
tions, GaM-treated cells failed to regain their ability to proliferate.

Antineoplastic Activity of Gallium Maltolate in Glioblastoma
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Figure 1.

GaM interaction with transferrin (Tf), Tf binding to cells, and effect of GaM on cell growth. A, Chemical structure of GaM. B, Comparison of the growth-inhibitory
effects of GaM and gallium nitrate (GN). D54 cells were incubated with equimolar concentrations of gallium as either GaM or GN. Cell proliferation was
measured byMTT assay after 72 hours of incubation. Values shown represent themeans� SE (n¼ 3). C,GaM forms complexeswith Tf in vitro. UV-Vis spectra of 100
mmol/L GaM (spectrum 1), 12.5 mmol/L Tf (spectrum 2), and 12.5 mmol/L Tf incubated with 12, 50, or 100 mmol/L GaM (spectra 3, 4, and 5, respectively).
Spectra were obtained at room temperature after a 30-minute incubation of Tf with GaM. D, TfR expression on glioblastoma cells and BMECs. Specific 125I-Tf
binding to TfR1 on intact cells is shown. E, GaM inhibits the growth of glioblastoma cell lines but not human brain microvascular endothelial cells (hBMECs). Maltol
alone does not inhibit D54 cell growth. Cell growth was measured by MTT assay after a 5-day incubation of cells with GaM. Values shown represent
means � SE (n ¼ 3). F, GaM induces cell death. Photomicrographs showing morphologic changes consistent with GaM-induced cell death in D54 cells incubated
without or with GaM for 48 hours (a–c) or 96 hours (d–f), respectively.
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These latter results strongly suggest that the growth-inhibitory
action of GaM is not reversible.

The IC50 concentrations for GaM glioblastoma cells in vitro are
relevant to gallium levels attainable in vivo. Tf has two metal-
binding sites per molecule and its concentration in the blood is
25.25–45 mmol/L. Under physiologic conditions, approximately
one-third of Tf in the circulation is bound by iron thus leaving
two-thirds of Tf available to bind Ga. Hence, gallium blood levels
of 34–60 mmol/L are possible if these remaining Tf metal-binding
sites are occupied by gallium.

GaM inhibits mitochondrial oxygen consumption
Several proteins of the citric acid cycle and the mitochondrial

electron transport chain contain iron–sulfur clusters that are
essential for their function. A decrease in cellular iron can there-
fore result in a loss of mitochondrial function (32, 33). Since we
have previously shown that gallium compounds can inhibit
cellular iron uptake (28, 34), we examined the effect of GaM on
cellular respiration as a measure of mitochondrial function. In
these experiments, intact cells were analyzed after they had been
incubated with GaM concentrations that were not cytotoxic to
cells over 24 hours. As shown in Fig. 2A, D54 cells incubated
with 50–100 mmol/L GaM for 24 hours did not display evidence
of cell death. However, as shown in Fig. 2B, these cells displayed

a progressive decrease in mitochondrial OCR and a loss of
mitochondrial reserve capacity after 24 hours of incubation
with increasing concentrations of GaM. Cells incubated with
25 mmol/L GaM, displayed a loss of reserve capacity (also known
as the spare respiratory capacity) without a decrease in OCR
below baseline, thereby indicating that even low, noncytotoxic
concentrations of GaMaffected the "fitness" of glioblastoma cells.
At higher concentrations, GaM produced a decrease in OCR and
reserve capacity. These results suggest that GaM decreases mito-
chondrial function as an early event before a decrease in cell
proliferation or induction of cell death can be detected.

GaM inhibits the iron-dependent activity of RRM2
Ribonucleotide reductase (RR) catalyzes the synthesis of deox-

yribonucleotides, a rate-limiting step in DNA synthesis (35). As
illustrated in Fig. 3A, RR consists of two heterodimeric subunits
M1 and M2, which are under the control of different genes (35).
RRM2 expression increases as cells enter S-phase (36). RRM2
contains a binuclear iron center and an EPR-detectable tyrosyl free
radical, both of which are essential for its activity (Fig. 3A; ref. 37).
Cellular iron deprivation or blockade of iron incorporation into
RRM2 inhibits RR enzymatic activity (38). Previously, we showed
that gallium nitrate and Tf-Ga inhibit RRM2 activity in leukemia
cells by: (i) induction of cellular iron deprivation which limits
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GaM inhibits mitochondrial bioenergetics. A, Effect of
GaM on cellular proliferation after a 24-hour incubation.
Cellular proliferation in D54 cells was measured by MTT
assay. B, Effect of GaM on mitochondrial bioenergetics
in D54 cells after a 24-hour incubation. Cellular oxygen
consumption rate (OCR) was measured by a Seahorse
96XF Analyzer, as described under Materials and
Methods.
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iron availability to RRM2 (22, 39) and (ii) direct action on
enzymatic function which is independent of iron (40). To exam-
ine whether GaM interfered with RRM2 in glioblastoma cells, we
measured the activity of the RRM2 tyrosyl radical by EPR spec-
troscopy in intact U-87 MG cells incubated with GaM for 24
hours. As shown in Fig. 3B, the EPR signal inGaM-treated cellswas
reduced by approximately 65% relative to control cells. To deter-
mine whether this was due to a reduction in RRM2 protein, RRM2
expression in U-87 MG cells was analyzed by Western blotting
after incubation with GaM for 24 hours. In contrast to the
reduction in the RRM2 EPR signal, we found that there was a
1.2- to 1.4-fold increase in RRM2 protein with 25 and 50 mmol/L
GaM (Fig. 3C and D). Although the reason for this increase is not
obvious, one possible explanation is that cells attempt to com-
pensate for the GaM-induced loss of iron-dependent RR activity
by increasing RRM2 protein production. Indeed, an amplification
of the RRM2 gene occurs during the development of drug resis-
tance to hydroxyurea, an agent that blocks RR activity by action on
the tyrosyl radical of RRM2 (41). Collectively, these results indi-
cate that GaM decreases the activity of iron-dependent RRM2
without reducing the synthesis of RRM2 protein.

Expression of gallium-targeted iron proteins in normal brain
and glioblastoma

To determinewhether the expression of iron-related proteins in
glioblastoma cells in vitro are relevant to glioblastoma in vivo, we
examined normal and glioblastoma-containing brain tissues
from rodent brains for TfR1 and ferritin and from human speci-
mens for RRM2. Consistent with prior reports, we confirmed that
TfRs were present on BMECs (Fig. 4A) indicating that these

receptors could serve as portals for GaM to traverse the BBB and
enter the brain.Within the brain, TfR1 expression in glioblastoma
cells wasmarkedly increased relative to the adjacent normal brain
(Fig. 4B). TheH- and L-subunits of the iron storage protein ferritin
were also increased in glioblastoma (Fig. 4C and D, respectively).
Ferritin is composed of 24 subunits of H- and L-ferritin in
proportions that differ in various cell types. L-subunit–rich ferritin
exists in greater proportion in tissues (such as the liver) that store
iron, while H-subunit–rich ferritin exists in greater proportion in
metabolically active tissues such as the heart and malignant cells
(42). As shown in Fig. 4C andD, bothH- and L-ferritin levels were
increased in glioblastoma cells relative to normal brain. These
findings are consistent with the studies of Schonberg and collea-
gues, which showed that ferritin levels are elevated in glioblas-
toma (7).

Figure 4F shows that iron-containing RRM2 protein is highly
expressed in human glioblastoma but not in normal brain (Fig.
4E). Collectively, the data in Fig. 4 strongly suggest that glioblas-
toma cells in vivo increase their expression of TfR1 and ferritin to
acquire and store greater amounts of iron than the surrounding
normal brain in order to support the activity of ribonucleotide
reductase and other iron-dependent proteins necessary for tumor
proliferation and viability.

GaMretards the growthof glioblastoma in a rodent brain tumor
model

Considering that GaM binds to Tf and inhibits the growth of
glioblastoma cells in vitro,we hypothesized that GaMwould enter
the brain via TfR1present on the BMECsof theBBB and inhibit the
growth of glioblastoma. Thus, we conducted a proof-of-principle
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experiment to examine the activity ofGaMagainst glioblastoma in
vivo. In the studies shown in Fig. 5, GaM or saline solution
(control) was administered to rats inoculated with U-87 MG
glioblastoma xenografts in the brain. Treatment of animals with
GaM or saline was initiated only after tumors were established in
the brain. Tumor response to treatment was assessed by MR
imaging and RECIST V1.1 criteria as used in the clinic (27). Figure
5A shows the pre- and posttreatment brain MRI from a represen-
tative experiment. Postcontrast T1-weighted images (T1þC) and
MION CBV maps were obtained in a glioblastoma xenograft-
bearing rat on days 8 and 18 for control (Fig. 5A a–d) and a GaM-
treated rat (Fig. 5A e–h). Comparing the cohort of control versus
GaM-treated animals, Fig. 5B shows that GaM significantly inhib-
ited the growth of glioblastoma relative to untreated controls. A
decrease in CBV in GaM-treated animals was also noted (Fig. 5C);
while the difference in this parameter did not reach statistical
significance, there was clearly a trend towards a reduction in CBV
with gallium treatment.

Tumors were examined for proliferation markers and TfR1
expression. Consistent with the antiproliferative activity of GaM,
tumors from GaM-treated animals displayed a significant reduc-

tion in mitotic figures (P ¼ 0.043) and mitotic index (P ¼ 0.045)
compared with untreated tumors (Fig. 5D, a and b). This finding
is consistent with an in vivo inhibition of cellular proliferation
by GaM in the glioblastoma xenograft and it clearly supports
a cytostatic effect of GaM. In addition, GaM-treated tumors
displayed a higher percentage of dead cells (37%) than untreat-
ed control tumors (24%). Although not significantly different,
the observed trend in this parameter suggests that GaM exerts a
cytotoxic effect that extends beyond inhibition of proliferation.
The conclusion is supported by Fig. 1F and by our prior studies,
which show that GaM induces apoptotic cell death in lympho-
ma cells (12).

GaM inhibits cellular iron uptake and upregulates TfR1
expression in glioblastoma in vitro and in vivo

The expressionof TfR1 in tumors fromcontrol andGaM-treated
animals was measured by IHC after completion of treatment. As
shown in Fig. 5E, TfR1 expression was markedly increased in
GaM-treated tumors relative to control tumors. This finding is
consistentwithGaM-induced tumor iron-deprivation in vivo aswe
have previously shown that Tf-Ga blocks cellular iron uptake and
upregulates TfR1 mRNA in human leukemic HL60 cells (43).
However, to confirm that glioblastoma U-87 MG and D54 cells
would respond to GaM in a similar fashion, we conducted
additional experiments which showed that GaM inhibited the
uptake of 55Fe-Tf (Fig. 6A and B), and produced an upregulation
of TfR1 in both these cell lines (Fig. 6C). These results support our
interpretation that the increase in tumor TfR1 expression in GaM-
treated animals is secondary to GaM-induced tumor iron
deprivation.

GSCs express ferritin, TfR1, and RRM2, and are sensitive to the
cytotoxicity of GaM

As an extension of our studieswithU-87MGandD54 cell lines,
we investigated whether three previously described patient-
derived GSC lines designated GSC-22, -33, and -44 (19),
expressed GaM-targeted iron proteins and were sensitive to its
cytotoxicity. Figure 6D shows that all three GSC lines expressed
immunoreactive H- and L-ferritin and RRM2 proteins. Ligand–
receptor binding and ligand internalization assays confirmed that
TfR1 present on GSCs bound 125I-Tf (Fig. 6E) and rapidly inter-
nalized it (Fig. 6F). As shown in Fig. 6G, the proliferation of these
GSCs could be inhibited by GaM in a dose-dependent manner.
Collectively, the experiments studied in Fig. 6D–G indicate GSCs
display highly functional TfR1 that can be targeted by GaM.

Discussion
Our study is the first to show that a novel gallium compound,

GaM, has antineoplastic activity against glioblastoma in vivo. We
demonstrated that GaM inhibited the growth of glioblastoma cell
lines in vitro and used MR imaging of the rat brain to measure the
impact of GaM on the growth and vascularity of established
glioblastoma brain tumor xenografts in live animals. These stud-
ies clearly show that GaM significantly retards the growth of
tumors and reduces their relative blood volume over a 10-day
period of treatment.

Early clinical studies with 67Ga scans showed that 67Ga was
taken up by brain tumors (44); additional studies revealed that
the cellular uptake and cytotoxicity of galliumwas enhanced by Tf
(28, 45). Consistent with earlier reports, we confirmed that TfRs
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U-87 MG glioblastoma xenograft inoculated in rat brain. E, RRM2 in human
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seen in other malignant cells.
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were expressed on both BMECs and glioblastoma tumors in
patients. These findings prompted us to investigate if TfRs could
be exploited for the delivery of Tf-Ga to brain tumors.

The strategy of enhancing drug delivery to the brain by conju-
gating drugs or toxins to Tf or to anti-TfR1 antibodies to target
BMEC TfRs has been reported by others (46). However, our
approach is different in that we have taken advantage of the
high-affinity binding of gallium to endogenous Tf in the circula-
tion to deliver Ga to the brain. We propose that after crossing the
BBB, Ga binds Tf in the brain leading to targeting of Tf-Ga- to TfR-
bearing glioblastoma cells. It is known that Tf in the normal brain
is present in oligodendrocytes and is produced and secreted by the
choroidal plexus (47). Furthermore, glioblastoma cells may also
secrete Tf as an autocrine growth factor, whichmay enable them to
acquire iron for their growth. In vitro studies show that GSCs
release Tf to culture medium (7). Thus, Tf in the tumor micro-
environment intended to transport iron into TfR1-bearing glio-

blastoma cells could be hijacked by gallium to enhance its uptake
by tumor cells.While our studies indicate that GaMpenetrates the
brain via TfR-mediated transport, it is possible that a variable
amount of GaMmay also cross the BBB independent of Tf; this is
being investigated.

Whereas GaM retards the growth of glioblastoma, it needs to
be determined whether gallium compounds will adversely
impact on normal brain function. In this regard, it is encour-
aging to note that central nervous system toxicity was not
reported in phase I and II clinical trials of gallium nitrate
(25, 26). Also, we did not observe neurologic deficits in the
rats treated with GaM. An important consideration is that
normal glial cells do not express TfRs in vivo (8). Thus, gallium
is likely to be taken up by TfR1-expressing glioblastoma cells
but not by normal glial tissue. However, neuronal cells do
express TfRs (8) and could be targeted by Tf-Ga, but whether
this would lead to neuronal toxicity remains to be determined.

Day 8

T1+C CBV

Day 18

Control GaMA
T1+C CBV

B

a. b.

c. d.

e. f.

g. h.

C

GaMControl GaMControl

Tumor size CBV 

P = 0.0159

100 µm

D

GaM-TreatedUntreated 

a

Mitotic figures

Mitotic
figures

100 µm

Mitotic figure

b

200 µm200 µm

GaM-TreatedUntreated 

Tumor Tumor

a b

Transferrin receptor
Normal

E

250

200

150

100

50

0

150

100

50

0

–50

–100

%
 C

ha
ng

e

%
 C

ha
ng

e
*

Figure 5.

GaM retards the growth of
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expression in vivo. A, MR imaging of
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Collectively, both preclinical and clinical studies suggest a
therapeutic index for gallium in which gallium compounds
could display antitumor efficacy at concentrations unlikely to
affect normal brain cells.

We show that GaM inhibits iron-dependent RRM2 and mito-
chondrial function. An important point in considering RRM2 as a
target in glioblastoma is that normal brain cells do not proliferate
in vivo and thus would not be expected to express RRM2. In
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A–C, GaM inhibits cellular iron uptake and upregulates TfR1 expression in glioblastoma cells. A and B,55Fe uptake by U-87 MG (A) and D54 cells (B) was
measured after cells had been incubated with 55FeTf for 3 hours in the presence of increasing concentrations of GaM. Values shown are means� SE of 55Fe uptake
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contrast, glioblastoma being a high-grade proliferating brain
tumor would be expected to express RRM2. This was confirmed
in our studies comparing the expression of immunoreactive
RRM2 protein in glioblastoma versus normal brain. Hence GaM,
as an inhibitor of iron-dependent RRM2 activity, would be
expected to block DNA synthesis in glioblastoma cells but not
in normal brain cells.

Whereas gallium-induced inhibition of RRM2 in itself would
be sufficient to inhibit the proliferation of glioblastoma brain
tumors, other iron-dependent mechanisms beyond RR could
be targeted by gallium. Thus, we focused on GaM's action
on the mitochondria. We hypothesized that iron–sulfur clus-
ter–containing proteins of the citric acid cycle and mitochon-
drial electronic transport chain could be prime targets for
disruption by GaM and that this could result in a block in
energy production and cell death. We discovered that even at
noncytotoxic concentrations, GaM produced loss of cellular
reserve capacity in glioblastoma cells. This finding indicates
that one of the initial mechanisms of action of GaM on the
mitochondria is a loss of its spare respiratory capacity; this
could decrease a cell's ability to cope with an energy demand
(48). At higher concentrations, GaM further suppressed mito-
chondrial function as evidenced by a dose-dependent decrease
cellular OCR and reserve capacity. This effect undoubtedly
contributes to Ga-induced cell death.

Central to gallium's mechanisms of action is its ability to
disrupt cellular ironmetabolism at several levels (11). Consistent
with this mechanism, we found that tumors in GaM-treated rats
increased their expression of TfR1. Cellular iron deprivation
produces an upregulation of TfR synthesis due to the enhanced
interaction of cytoplasmic iron regulatory proteins-1 and -2 (IRPs-
1,-2) with iron-regulatory elements (IRE) present on the 30

untranslated region of the TfR mRNA (49). In support of this
mechanism, we demonstrated that GaM inhibited iron uptake by
U-87MGandD54 cells in vitro and that this resulted in an increase
in cellular TfR expression. Collectively, our studies strongly sup-
port tumor iron-deprivation as one of the mechanisms of action
of GaM against glioblastoma in vivo.

In summary, our results show for the first time that a gallium
compound that perturbs tumor iron homeostasis has potential in
the therapy of glioblastoma brain tumors. Our animal studies
serve as proof-of-principle that GaM can enter the rodent brain

and retard the growth of glioblastoma tumors; this builds the
foundation for additional research. Future studies will investigate
the efficacy of gallium compounds alone and in combination
with other drugs in GSC-derived orthotopic xenograft models.
These studies will determine the optimum dose and treatment
schedule for galliumcompounds and their impact on survival. It is
envisioned that such preclinical studies will lead to GaM-based
clinical trials in glioblastoma.
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