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Hyperthermia has demonstrated clinical success in improving the efficacy of both chemo- and radio-therapy in
solid tumors. Pre-clinical and clinical research studies have demonstrated that targeted hyperthermia can in-
crease tumor blood flow and increase the perfused fraction of the tumor in a temperature and time dependent
manner. Changes in tumor blood circulation can produce significant physiological changes including enhanced
vascular permeability, increased oxygenation, decreased interstitial fluid pressure, and reestablishment of nor-
mal physiological pH conditions. These alterations in tumor physiology can positively impact both small mole-
cule and nanomedicine chemotherapy accumulation and distribution within the tumor, as well as the fraction
of the tumor susceptible to radiation therapy. Hyperthermia can trigger drug release from thermosensitive for-
mulations and further improve the accumulation, distribution, and efficacy of chemotherapy.
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1. Introduction

Over the course of evolution, humans have developed very effective
temperature regulation mechanisms in order to maintain an environ-
ment that allows cells to prosper [1,2]. Hyperthermia (HT) treatment in-
volves elevating in vivo tissue temperature above the normal, closely
controlled physiological range. In contrast to other thermal therapies
such as ablation [3] and cryotherapy [4] that exert direct cytotoxic ef-
fects by inducing large changes in temperature, HT mildly increases
temperatureswithin the body to between ~39 – 45 °C. HT can be applied
to the whole body [5] or target specific regions, often a single tissue [6].
Many different techniques are used in order to induce HT temperatures.
In the clinical setting, local HT is delivered by external energy sources
including ultrasound (US) [7], radiofrequency [8], and microwave [9].
These same techniques can be employed in the pre-clinical research en-
vironment, although the most common approach involves submerging
the animal’s limb in water [10]. Target tissue temperatures must be ac-
curately monitored as innate thermoregulation mechanisms will dissi-
pate energy and reduce temperature. Whole body HT is commonly
achieved by elevating ambient temperature with lower temperatures
(i.e. 39.5-40.5 °C) and longer durations (i.e. 6-12 h) compared to locally
targeted HT [11].

This article focuses on the use of HT in oncology as an adjuvant to
chemotherapy (ChT) and radiotherapy (RT). There is solid clinical evi-
dence to support the addition of HT to ChT and RT treatment protocols
in order to improve patient outcomes. In 2018, Issels et al. reported
Phase III (NCT00003052) clinical trial results that represent the most
comprehensive study demonstrating the enhancement of standard
ChT by addition of HT [12]. Patients with localized, high-risk soft tissue
sarcomas received four cycles of neoadjuvant ChT (doxorubicin,
ifosfamide, and etoposide) or ChT and HT (42 °C, 1 h). Almost all pa-
tients then underwent surgical resection and the majority of patients
in both treatment groups received post-surgical RT (50 – 60 Gy). The
addition of HT into the treatment regimen significantly increased me-
dian survival time from 6.2 to 15.4 years. Ten-year survival rates were
52.6% for 162 patients treated with ChT and HT and 42.7% for 167 pa-
tients treated with ChT alone. In 2016, Datta et al. published two land-
mark systematic reviews establishing the therapeutic benefit of
adding HT to RT in breast [13] and cervical [14] cancers. Eight studies
of locoregional recurrent breast cancer involving 627 patients compared
therapeutic outcomes of RT with HT to RT alone. A statistically signifi-
cant difference was observed between treatment groupswith complete
response observed in 60.2% of patients receiving RT + HT compared to
38.1% for RT alone. Six previously reported clinical trials were analyzed
in which patients with locally advanced cervical cancer received either
RT + HT (n = 215) or RT alone (n = 212). Patients treated with RT
and HT were more likely to demonstrate complete response compared
to RT alone, but the 8.4% increase in survival observed in the RT + HT
group was not significant. These promising results warrant further
study on the benefits of combining HT with both ChT and RT. Selection
of the right patient population is critical to the success of clinical trials.
These trials included patientswith locally advanced or recurrent tumors
that are well suited to the potential therapeutic enhancement of HT.
This article discusses how tumor physiology and microenvironment
can further be used to stratify patients most appropriate for HT in
order to increase the probability of clinical trial success.

The recent clinical advancement of HT is rooted in many years of re-
search. In 1974, Robinson et al. published their observation that HT sig-
nificantly increases the effect of RT on tumors and importantly, does so
to a greater extent than sensitization of normal skin tissue [15]. Follow-
ing this, a number of studies published in the latter half of the 1970s
confirmed that HT was able to directly kill cancer cells as well as sensi-
tize cells to the toxic effects of ChT and RT [16–20]. Fig. 1 depicts the log-
arithmic increase in published cancer research over the past sixty years
(red) aswell as the increasing fraction of these publications that involve
HT (black). The shape of the curve is reminiscent of the Gartner hype
cycle [21] with clear peaks of interest in the early 1980s and 1990s.
The two most highly cited papers preceding the initial peak are
Weinstein et al. "Liposomes and local hyperthermia: selective delivery
of methotrexate to heated tumors" [22] and Overgaard's “Simultaneous
and sequential hyperthermia and radiation treatment of an experimen-
tal tumor and its surrounding normal tissue in vivo” [23]. These events
are referred to as technology triggers in the Gartner hype cycle and rep-
resent seminal in vivopapers demonstrating the ability of HT to increase
liposome drug accumulation in the tumor [22] and the time and tem-
perature dependent manner in which HT can improve RT efficacy [23].
Along with the second era of hype in the early 1990s that saw highly
cited improvements in heating technology, clinical advancement, and
a broadening of research efforts [24–28], these early discoveries laid
the foundation for the current sustained ‘plateau of productivity’.

In order to exert their intended effect, intravenously administered
drugsmust be transported from the vascular space through the vascular
walls into the interstitial tumor space and ultimately to their specific
target that often lies within the cancer cells. A variety of drug delivery
strategies including advanced formulations and physiological modifica-
tions have been developed to increase the efficiency of this process [30].
HT can induce physiological changes and trigger drug release in order to
impact the accumulation and distribution of drugs within the tumor.



Fig. 1. Frequencydistribution of cancer research publications involvingHTover afifty-year
period demonstrating the Gartner hype cycle. Data sourced from a Web of Science
database search for articles published between 1960 – 2019 that include ‘cancer’,
‘tumor’, or ‘tumour’ within the title, abstract, and keywords. Represented in black are
the percentage of those publications that contained ‘hyperthermia’ within the title,
abstract, or keywords, normalized to 1 for the highest year (1992).
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Convection and diffusion are the transport phenomena that govern de-
livery of drugs from the vasculature to the tumor as well as penetration
into the tumor tissue [31]. Drug diffusion is a concentration-dependent
process that follows Fick’s first law. Diffusion is approximately inversely
proportional to molecular weight, but is also dependent on numerous
factors including molecular shape and solute−solvent interactions
[32]. Diffusion-driven processes contribute to accumulation of small
molecule drugs to a much greater extent than is the case for macromo-
lecular or nanomedicine drugs [33]. Indeed, one analysis estimated that
it would take 100 nm liposomes 84 d to diffuse through 100 μm of
tumor tissue, whereas free doxorubicinwould diffuse the same distance
in 5 s [34]. Furthermore, the diffusivity of drugs is dependent on the bulk
media. Drugs will more readily diffuse from blood into perivascular
spaces compared to diffusion within the stroma-rich tumor microenvi-
ronment [35]. In the context of drug delivery, convection is the bulk
movement of fluid that transports drugs and other molecules [36].
Fluidflows along pressure gradients and the heterogeneous distribution
of fluid pressure within the tumor results in regions of high and low
convection-mediated drug delivery [37]. In general, fluid pressures are
lower at the tumor periphery, resulting in preferential accumulation
of nanomedicines compared to the centre of the tumor [38]. However,
even minimal transvascular pressure gradients can result in significant
accumulation of nanomedicines [36,39]. Therefore, temporal fluctua-
tions in either vascular or interstitial fluid pressure can strongly influ-
ence drug accumulation. The multifactorial impact of HT on the
transport of chemotherapeutic agents from the vasculature into the
tumor interstitium is discussed throughout this review.

This review specifically focuses on the physiological response to
HT, in particular changes in blood flow and vascular permeability
that impact the tumor microenvironment, in particular hydrogen ion
concentration (pH), partial pressure of oxygen (pO2), and interstitial
fluid pressure (IFP). The influence of these changes on the efficacy of
ChT and RT are discussed in addition to the measurement of each pa-
rameter in the pre-clinical and clinical context. Specific attention is
paid to the use of triggered release drug formulations, particularly
thermosensitive liposomes (TSL) in combination with HT. As outlined
in Fig. 2, the impact of HT on the efficacy of ChT and RT is a complex,
multifactorial process that involves several different physiological
pathways. Without clearly defined conditions, generalizations about
whether or not a specific intervention exerts a certain effect are
often of little value in scientific research. HT has the potential to
exert the effects depicted in Fig. 2, but these outcomes are dependent
on the manner in which HT is delivered (e.g. duration and tempera-
ture) and the underlying tumor biology. Furthermore, HT exerts
several impacts that are outside the scope of this review, including
its effects on the immune system and effects at the molecular biology
level such as the heat shock protein response and the impact on DNA
damage repair. These responses can also impact ChT and RT efficacy
and are discussed thoroughly in other articles within this special
issue. While much is known, there is still a great deal of research to
be conducted in order to optimize the clinical integration of HT with
ChT and RT. Personalized characterization of tumor physiology includ-
ing blood flow parameters, pO2, pH, and IFP could identify patients
that are more likely to benefit from HT and further increase the suc-
cess of future clinical trials.

2. Blood Flow

The most significant physiological response to HT is an increase in
blood flow. All of the other physiological responses discussed in this re-
view are a direct result of an increase in blood flow within the tumor
volume. When heat is applied to many human and animal tissues,
blood flow rapidly increases in order to dissipate heat [40]. This phe-
nomenon is most prominent in tissues such as the skin, while the
cooling effect is less effective in tissue such as the testes [41]. The Pennes
bioheat Equation (1)was developed tomodel this heat dissipation in bi-
ological tissues [42].

∇ � k∇Tþ q
:

m þ ρbcbωb Tb−Tð Þ ¼ ρc
∂T
∂t

ð1Þ

The change in the temperature of the tissue as a function of time (∂T/∂t)
is dependent on the three main factors, which are included on the left
hand side of Equation (1). With regards to HT applied to a tumor, the
first term (∇ · k∇ T) describes heat dissipated out of the tumor and into
the surrounding tissue by conduction,with k being the thermal conduc-
tivity of tissue. The second term (q

:

m) denotes heat added to the tumor
that is generated by cellular metabolism. The third term on the left de-
scribes the heating or cooling of the tissue resulting from blood flow
(ωb) and is proportional to density (ρ) and specific heat (c) of blood
and tissue, the latter two terms remaining relatively unchanged. Under
hyperthermic conditions, the tissue has been heated and its tempera-
ture (T) is greater than the temperature of blood flowing through it
(Tb). As a result, this term is negative, indicating a cooling effect
resulting from blood flow. Blood flow (ωb) is themost easily modulated
parameter and increasing blood flow is therefore the most effective
method for regulation of tumor temperature following the application
of HT. Due to the unique biology of tumors, their physiological response
to HT is not the same asmost other normal tissues [43]. Much is known
on this topic as many of the studies that established the modern disci-
pline of HT research were focused on the impact of HT on blood flow,
specifically tumor blood flow [44].

2.1. Effect of HT on tumor blood flow

Dr. Chang-won Song and colleagues were responsible for much of
the pioneering work in determining the effects of HT on tumor blood
flow. Prior to this, Dr. Song’s work during the 1960s and 1970s focused
on the impact of RT on tumor blood flow [45,46]. Many of the tech-
niques employed were similar and the RT and HT fields continue to be
closely aligned. In 1980, along with Drs. Rhee, Kang, and Levitt, Dr.
Song published six research articles studying the relationship between
HT and tumor blood flow [47–52]. One study used radiolabelled micro-
spheres and radioscintigraphic quantification to determine the effect of
60 min of water bath heating at 43 °C on several vascular parameters in
subcutaneously implanted mammary carcinomas [51]. Significant in-
creases in vascular volume, vascular permeability, and blood flow
were observed in skin and muscle tissue, but none of these parameters
were significantly altered in heated compared to unheated tumors. It is
important to note that both before and after heating, blood flow in



Fig. 2. Potential impacts of HT and the ensuing effects on the efficacy of ChT and RT. This flowchart has been adapted from [29].
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normal skin and normalmuscle was significantly lower than blood flow
in tumors 300 – 700mg in size. Therefore, even without the increase in
blood flow, heat dissipation in these tumors would have been greater
compared to normal tissues. Conversely, in many studies blood flow in
tumors is less than that observed in normal tissues [53]. Follow-up
work demonstrated that this HT regimen induced a marked decrease
in vascular volume at 7 and 20 h post-heating suggesting that this HT
protocol resulted in vascular damage in this tumor model [52]. In
1984, Jain and Ward-Hartley reviewed the literature to determine the
effect of HT on blood flow [53]. Summarizing 28 studies, the authors
provided prescient commentary on the heterogeneity associated with
blood perfusion of tumors and identified the limitations associated
with themacroscopicmeasurement techniques utilized inmost studies.
While they noted this further complicates comparison of studies that
used a variety of techniques to assess blood flow, the general trend
seemed to be that heating to lower temperatures (i.e. < 43 °C) resulted
in an increase in tumor blood flow [54,55] while heating to higher tem-
peratures resulted in unchanged or decreased bloodflow [56–58]. How-
ever, there were also examples wherein heating for 1 h at 42 °C did not
result in an increase in blood flow [59]. In a clinically relevant canine
study, Vujaskovic et al. employed MW HT for 1 h and measured tumor
perfusion by MR imaging before and 24 h following treatment [60].
They separated tumors into two groups: those for which amedian tem-
perature of <44 °C was reached during heating and tumors reaching a
temperature of >44 °C. Tumor perfusion was significantly higher com-
pared to baseline in the tumors heated to temperatures of <44 °C
while perfusion was lower compared to baseline, but not significantly
so, in the second treatment group. A recent estimate suggested that
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elevating tumor temperatures to levels below ~42 °C is essential to in-
creasing bloodflow [61]. However, both time and temperature of HT ex-
posure critically impacts physiological effects. Cumulative equivalent
minutes at 43 °C (CEM43) is the standardized measure for quantifying
thermal dose within the hyperthermic oncology field and is expertly
discussed elsewhere in this issue [62]. Formally proposed by Sapareto
and Dewey [63], CEM43 is based on the biphasic slope of the time and
temperature dependent Arrhenius cytotoxicity plot [18,64,65]. As this
approach is based on cell killing, specific applicability tomodern studies
focused on modifying tumor physiology and biology has been debated
[66–69]. However, it remains clear that exposure time and temperature
are critical factors that dictate the impact of HT and must be afforded
consideration.

There are several mechanisms by which blood flow within a tissue
can increase: an increase in vascular volume within the tissue (either
by dilation of blood vessels, re-perfusion of non-flowing blood vessels,
or formation of new vasculature) or an increase in the blood flow veloc-
ity. Dewhirst et al. were the first to utilizewindow chambermodels and
microscopy techniques to directly measure vasodilation during HT [70].
The authors noted varying degrees of blood vessel dilation with smaller
vessels seeming to dilate more than larger vessels (e.g. 40 μm diameter
vessel increasing to 95 μm upon heating to 42 °C). HT was also able to
increase the velocity at which bloodwas flowingwith red blood cell ve-
locity increasing threefold in some vessels, presumably resulting from
blood vessel dilation and an increase in blood volume within the
tumor [71]. This work also noted the negative effect on blood flow of
pre-cooling the tissue to 30 °C prior to administering HT. In vessels
cooled to 30 °C prior to administering HT, blood flow was reduced to
5% of that measured in 38 °C control vessels. HT increased blood flow
in both cooled and normothermic vessels, but flow in pre-cooled vessels
never exceeded 5% of that recorded in non-cooled vessels. This observa-
tion is of critical importance given that in preclinical research, animal
body temperatures may drop under anesthesia during experimental
setup if care is not taken to ensure the animal is kept warm. Further-
more, differences in blood flowmay arise from variations in tissue tem-
perature associated with the location of the tumor. More superficial
tumors (i.e. subcutaneous) are likely to have lower tissue temperatures
compared to more deeply implanted tumors (i.e. intramuscular, some
orthotopic sites) and will cool faster under anesthesia. The site of im-
plantation of a tumor can have a profound effect on tumor development
including its microenvironment composition, degree of invasiveness,
and metastatic potential [72,73]. This is relevant to work in the HT
field as many preclinical heating techniques (e.g. water bath) require
superficial tumors. Dewhirst et al. also noted that vascular stasis oc-
curred at lower temperatures in tumor arterioles compared to tumor
venules and was dependent on the rate of heating, but generally oc-
curred around 42 °C [70]. Rate of heating is seldom reported in research
studies that measure the effect of HT on tumor blood flow. The authors
hypothesized that HT-induced temporary vascular shuntingmay be re-
sponsible for vascular stasis in venules at lower temperatures [70,74].
Normal tissues produce nitric oxide (NO) in response to stimuli includ-
ing low pH and low pO2 [75]. As will be discussed later in this review,
these are conditions that tend to occur in tissues lacking in blood flow.
NO is known to regulate blood flow by stimulating vessel dilation by ac-
tivation of soluble guanylate cyclase [76]. Griffin et al. demonstrated
that application of HT (i.e. 41.5 – 42.5 °C, 30 – 60 min) was able to in-
crease NO levels in tumors for up to 24 h following treatment [77].

It is apparent that it cannot be unequivocally stated thatHT increases
tumor blood flow. However, it is equally clear that HT has the potential
to increase tumor blood flow. It is widely accepted that vascularity
varies substantially between tumors (both of the same and different
subtypes) as well as within individual tumors [78]. Heterogeneity of
tumor vasculature plays a central role in complicating the prediction
of the effect of HT on blood flow [79]. Kelleher et al. used laser Doppler
flowmetry to characterize the variable effect of HT on tumor blood flow
in DS-sarcomas implanted subcutaneously in rats [79,80]. Tumors were
heated at a rate of 0.5 °C / min up to 44 °C. They noted that smaller tu-
mors (i.e. ~700 mm3) had higher initial blood flow and were less sus-
ceptible to vascular stasis as heating commenced compared to larger
tumors (i.e. ~2500mm3). However, high variability in blood flowwithin
individual tumorswas observed in both large and small tumors. In some
regions, blood flow increased 2.3-fold whereas in other regions blood
flow decreased by 75%. Overall, it can be concluded that HT in the
range of 40 – 42 °C has the general effect of increasing tumor blood
flow [81]. However, given that tumor blood flow is so temporally and
spatially heterogeneous, it is essential that accurate methods are used
to measure tumor blood flow in order to determine the effects of HT.

2.2. Effect of RT on blood flow

Blood flow itself does not directly impact the efficacy of RT, but rather
mediates treatment outcomes through downstream effects on pO2, pH,
and IFP as will be discussed later. However, RT can directly affect blood
flow. Similar to HT, RT affects blood flow in a dose dependent manner.
Park et al. completed an exhaustive review of the literature regarding
the vascular effects of RT and concluded that tumor blood flow is un-
changed or slightly increasedduring thefirst several fractions of RT before
decreasing following a greater number of treatments [82]. In a clinical
study, a dose of 2 Gy/fraction administered five days per week was
noted to have increased blood flow for the first two weeks and then sub-
sequently resulted in decreased blood flow during the last 2 – 3weeks of
treatment [83]. A more recent analysis of preclinical studies from Arnold
et al. confirms that higher doses of RT have anti-vascular effects while
lower dose single fractions can promote vascular growth. They cite nu-
merous studies in which single fractions > ~10 Gy reduce tumor blood
flow [84–86] as well as other studies with single fractions within the
rangeof ~2–5Gy inwhich tumorbloodflowwasunchangedor increased
[87–89]. The effect of RT on tumor blood flow is a dose dependent phe-
nomenon and RT protocols should be selected carefully in order to
synergize with other treatment modalities. Indeed, Hu et al. treated
mice bearing FaDu tumors with weekly single fractions of 7.5, 9, or 13.5
Gy/d and measured tumor perfusion and oxygenation during and after
RT [90]. Only the highest dose of 13.5 Gy increased tumor oxygenation,
which was particularly significant given that they also noted that in-
creases in tumor oxygenation following RT were associated with im-
proved local control.

2.3. Effects of blood flow on RT and ChT

ChT remains a standard modality in the treatment of cancer. How-
ever, the efficacy of ChT is often limited by heterogeneous distribution
of drug within the tumor. For anti-cancer drug therapies to be effective,
they must access and kill almost all cancer cells within the tumor [33].
Transport of drugs in the extravascular space of tumors is extremely
limited, so drug distribution profiles within tumors tend to be very sim-
ilar to blood perfusion profiles [91]. This is particularly true for small
molecule ChT (i.e. MW < 1 kDa) for which extravascular transport is
governed by diffusion [33]. Provided that appropriate pressure gradi-
ents exist, fluid convection drives larger molecular weight drugs and
nanomedicines into and through the tumor interstitium. Delivery effi-
ciency of these therapies is dependent on perfusion, but also vascular
permeability and IFP [92]. These effects will be discussed in greater de-
tail later in this review. Similarly, the effect of blood flow on the efficacy
of RT is indirect, being dictated largely by oxygenation levels andwill be
discussed in Section 2.

While they did not usemedical imaging tomonitor changes in blood
flow in real time, Sun et al. employed immunohistochemical staining to
ascertain that HT can increase perfusion in HT29 human colorectal ade-
nocarcinomas in mice [93]. Tumors that had been heated had a higher
fraction of perfused vessels compared to tumors that had not. The au-
thors noted variable response to heat within different regions of the
same tumor. However, they also noted that the increased accumulation
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of the small molecule perfusion marker in the tumor highlights the po-
tential for HT to increase drug delivery. Ausmus et al. measured the ef-
fect of HT on blood flow and cisplatin accumulation in mammary
adenocarcinomas implanted in rats and heated at 43 °C for 1 h using a
Nd:YAG laser [94]. Blood flowwasmeasured using radiolabelledmicro-
spheres and was highest following HT and quickly returned to baseline
levels. Five separate treatment groups were compared with cisplatin
being administered without HT, one hour prior to HT, at the start of
HT, at the end of HT, and 1 h post-HT. The highest concentration of cis-
platin in tumors was obtained when the drug was administered at the
beginning of HT. Given the rapid systemic clearance of cisplatin (t1/2α
= 1.5 min; t1/2β = 14.5 min in rats) [95] and the short-lived effects of
this HT treatment on bloodflow it is not surprising that the optimal dos-
ing schedule involves administration of drug concurrently with HT. Fur-
thermore, Landon et al. have demonstrated that HT increases cisplatin
uptake into cancer cells via the copper transporter Ctr1 [96].

At lower temperatures (e.g. < 43 °C), HT can increase tumor blood
flow while higher temperatures often result in a reduction in blood
flow.
3. Vascular Permeability

The presence of drug in blood (determined by the pharmacokinetics
of the drug) and the presence of active blood vessels in tumors (i.e. perfu-
sion) are the two most important factors governing drug delivery to tu-
mors. Once drugs reach the blood pool within the tumor, vascular
permeability is a critical factor determining transport into the tumor in-
terstitium. Vascular permeability is subdivided into two distinct mecha-
nisms by which compounds transit from the vasculature into the
interstitium: transcellular and paracellular transport [97] (Fig. 3). Small
molecules drugs (i.e. < ~1000 Da) are transported through endothelial
cells via tubular vesicles, called vesicular-vacuolar organelles (VVO) in a
process known as transcytosis [98]. Transcytosis is primarily mediated
by histamine and vascular endothelial growth factor (VEGF) [99], an im-
portant signalling protein regulating the growth of new blood vessels
that was originally denoted vascular permeability factor (VPF) [100].
VEGF is known to be overexpressed in many cancers, particularly those
lowwith low pO2 [101]. Larger molecules are generally thought to travel
between adjoining endothelial cells in a process termed paracellular
transport. Endothelial cells lining the vasculature are connected by
adherens junctions (AJ) and tight junctions (TJ) that maintain vessel in-
tegrity [102]. Pericytes regulate vascular permeability by controlling TJ
formation and maintaining these junctions [103]. Pericyte abnormalities
in tumors likely contribute to increased vascular permeability
[104–106]. Pericyte activity is largely controlled by endothelial cell para-
crine signaling and the family of angiopoietin signaling molecules that
control vascular permeability and angiogenesis through the endothelial
receptor tyrosine kinase Tie2 [107,108]. Vascular endothelial cadherin
(VE-cadherin) is the most common AJ protein and is therefore critical in
the regulation of vascular permeability [109,110]. VEGF is able to disrupt
VE-cadherin [111] and thus increase gaps between endothelial cells. VEGF
is therefore an importantmolecule controlling bothmajor types of vascu-
lar permeability. As most tumors overexpress VEGF, tumor vasculature is
commonly more permeable to both small molecule drugs and
nanomedicines compared to normal tissue. Importantly, vascular perme-
ability has been shown to play a central role in cancer metastasis [112].
HT-mediated changes in vascular permeability are dependent on tumor
biology. Chen et al. demonstrated this by comparing the effect of a stan-
dardized HT protocol (i.e. 42 °C, 1 h) in two separate mouse dorsal
skinfold chamber models [113]. In human pharyngeal FaDu tumors, HT
resulted in a 9-fold increase in vascular permeability. However, inmurine
4T07 breast tumors, no increase was observed. This study clearly demon-
strates the importance of considering tumor biology when designing the
study and highlights difficulties with comparing studies and generalizing
results.
It has long been presumed that paracellular drug transport was re-
sponsible for nanomedicine accumulationwithin tumors, recent reports
have suggested that larger drugs such as nanomedicines are also able to
accumulate via transcytosis [98,114]. While further study in this area is
sure to be done, well-controlled studies of nanomedicine accumulation
are able to demonstrate preferential uptake in tumors as a result of
functional vascular permeability that leads to therapeutic efficacy. It is
important to note that increased accumulation of large molecules and
nanomedicines is not a confirmation of increased paracellular vascular
permeability. Other factors such as tumor blood supply (e.g. blood vol-
ume, blood flow, arteriovenous shunting) and tumor microenviron-
ment factors (e.g. stromal content, IFP) must be controlled and
measured in order to accurately attribute the correct contribution to
each aspect [33]. In an extensive preclinical study by Wong et al.
tumor accumulation of small molecule and nanomedicine contrast
agents was used to study the relationship between vascular permeabil-
ity and treatment efficacy [115]. This work highlights the potential im-
pact of rigorously studying multimodal therapies (i.e. ChT, ablation,
HT) in combination with assessing physiological response to treatment.

3.1. Enhanced permeability and retention effect

Vascular permeability is known to play a central role in tumor accu-
mulation of nanomedicines. Since Matsumura and Maeda published
their seminal work detailing the accumulation of large particles (i.e.
MW12,000 – 160,000)within solid tumors [116], the enhanced perme-
ability and retention (EPR) effect has become a central tenant of
nanomedicine drug delivery [117]. Vascular permeability is central to
this effect whereby long-circulating nanomedicines slowly accumulate
at the tumor site by passing through fenestrations in tumor vasculature
(i.e. paracellular transport). Retention of nanomedicines at the tumor
site is driven by impairment of the lymphatic drainage system. In pre-
clinical models, the EPR effect often produces high levels of tumor accu-
mulation of nanomedicines (i.e. ~0.7 % of injected dose) [118] compared
to administration of free drug [119]. For example, in murine 4T1 breast
tumors, Laginha et al. demonstrated that Doxil increases the maximum
concentration of doxorubicin by 3.6-fold in comparison to free drug
[120]. The liposomes greatly increased tumor residence time and in-
creased tumor AUC0-7 days by 87-fold. The EPR effect is known to be
quite variable in human subjects, even for the same subtype of cancer
[121]. Therefore, it is desirable to increase the potency of the EPR effect
by increasing vascular permeability.

3.2. Effect of HT on vascular permeability

Several groupshavedemonstrated that tumorbloodvessel dilation in-
creases paracellular vascular permeability and therefore accumulation of
nanomedicines. Seki et al. increased tumor bloodflow inmice by topically
applying the vasodilator nitroglycerin [122]. Vasodilation doubled the ac-
cumulation of 180 nmmacromolecular aggregates of polyethylene glycol
(PEG)-protoporphyrin within the tumor and resulted in a significant im-
provement in efficacy. Chen et al. developed a nanomedicine vasodilator
by loading the hypertension drug hydralazine into liposomes [123].
Daily injections of liposome encapsulated hydralazine for three days re-
sulted in an increase in vessel diameter as measured by histology and
an increase in vascular permeability as measured by injection of fluores-
cent liposomes. Wei et al. prepared polymeric micelles (100 nm in diam-
eter) that contained both doxorubicin and Cu ions that stimulated
endogenous production of NO and dilated tumor blood vessels [124]. Ad-
ministration of themicelles resulted in threefold greater tumor drug con-
centrations at 24 h in comparison to equivalent systems that did not
generate NO. A significant improvement in efficacy was observed in
mice bearing murine 4T1 breast carcinomas. As previously discussed,
HT is a safe and effectivemethod to increase tumor blood flow by vasodi-
lation. It is accepted that an important functional effect of HT-induced va-
sodilation is increased paracellular vascular permeability [125,126]. In



Fig. 3. Transport mechanisms for small molecule and macromolecular agents from the vasculature into the tumor interstitium. Small molecules are transported mainly via vesicular-
vacuolar organelles (VVO) whereas larger molecules and nanomedicines are generally thought to enter via paracellular transport. Extracellular matrix (ECM). Adapted under a
Creative Commons license (CC BY 3.0) from Azzi et al. [97].
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vitrowork has shown an increase in gap size between endothelial cells
following HT [127]. HT has been shown to result in increased levels of
NO within tumors [77]. NO is known to increase vascular permeability
[128,129] by controlling junctions connecting vascular endothelial cells
(i.e. AJ, TJ) [130].

The potential for increased nanomedicine delivery to tumorsmediated
byHT-induced increases in vascular permeability has beenwell character-
ized. Kong et al. studied the nanomedicine size dependence of HT-
mediated vascular permeability [131]. Three different sizes of liposomes
(i.e. 100, 200, 400 nm) were produced and accumulation in the tumor in-
terstitium was measured using window chamber models of SKOV-3
human ovarian carcinoma in mice. Preheated tumors were additionally
heated for 60min at 34 or 42 °C following liposome administration. Signif-
icantly greater liposome extravasationwas observed at 42 °C for all formu-
lations with 100 nm liposomes reaching the highest concentration in the
tumor interstitium. There was no measurable extravasation for any of
the formulations at 34 °C. Kirui et al. employed plasmon-resonant gold
nanorods and low photon flux laser photothermal therapy to induce
local HT treatment (i.e. 42 °C, 20 min) [132]. A large, 11-fold increase in
tumor blood flow during the course of HTwasmeasured by laser Doppler
flowmetry. Vascular permeability was measured by both an albumin-
binding small molecule (Evans blue dye; 961 Da) and two separate fluo-
rescent macromolecules (dextrans; 70 kDa and 2 MDa) administered fol-
lowing HT treatment. Tumor extravasation was determined by perfusing
the blood volume with saline and measuring Evans blue or dextran con-
centration in resected tumor tissues. Evans blue dye concentrations in
heated tumors were elevated by 2-fold at 1 h and 2.5-fold at 3 h following
HT compared to unheated tumors. Concentrations of 70 kDa dextrans
(~23nm indiameter)were ~50%higher inheated tumors compared toun-
heated from 0 – 24 h following HT. The kinetics of the larger 2 MDa
(~56 nm in diameter) dextrans was much different with no difference in
accumulation in heated compared to unheated tumors at 1 h following
HT. However, at 5, 12, and 24 h following HT the difference in accumula-
tion in heated compared to unheated tumors continued to increase up to
~2.5-fold. The use of three different agents to characterize vascular perme-
ability demonstrates the complex physiological response of tumors to HT
and the need for advanced, functional determination of vascular perme-
ability. Several studies have confirmed the ability of HT to increase
tumor accumulation of monoclonal antibodies [133–135]. Hauck et al.
demonstrated that HT (41.8 °C, 4 h) was able to increase the tumor accu-
mulation of antibodies in human gliomas implanted subcutaneously in
mice by 3.5-fold compared to unheated tumors [136]. Interestingly, they
found that increased accumulation was not related to changes in tumor
IFP and hypothesized that changes in tumor blood flow and vascular per-
meability are likely to be the main contributors [137].

3.3. Effect of RT on vascular permeability

Similar to blood flow, vascular permeability does not exert a direct
effect on RT, but rather mediates therapeutic efficacy through pO2, pH,
and IFP. However, RT can exert important vascular effects. Song and
Levitt measured vascular permeability in rats bearing subcutaneous
Walker 256 breast carcinomas using radiolabeled albumin [138]. They
observed increased vascular permeability in this tumormodel following
single fraction RT ranging from 2 – 20 Gy [45]. Single fractions of 2.5, 5,
and 20 Gy all resulted in increased vascular permeability after 24 h
[139]. This was interesting because 20 Gy resulted in decreased blood
flow at this time point, whereas 2.5 Gy increased blood flow, 5 Gy had
no impact. After 48 h the single 20Gy fraction substantially reduced vas-
cular permeability whereas it took 8 – 9 days to observe a drop in vas-
cular permeability in the other treatment groups. A similar
phenomenon was observed with regards to the impact of RT on the de-
livery of therapeutics. In intramuscular ovarian (OCa-1) tumors inmice,
Li et al. reported that a 15 Gy RT treatment increased serum VEGF con-
centrations and increased vascular permeability as measured by
albumin-bound Evans blue dye [140]. This resulted in increased tumor
accumulation of a water-soluble polyglutamic acid-paclitaxel conjugate
and increased therapeutic efficacy relative to either ChT or RT alone.
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Davies et al. studied the effect of single dose and fractionated RT on
Doxil® efficacy in human osteosarcoma xenografts [141]. They
found that both single (8 Gy) and fractionated (3 x 3.6 Gy) RT de-
creased vascular permeability as measured by DCE-MRI using low
molecular weight contrast agents. However, RT increased Doxil ac-
cumulation ~2- to 4-fold. The authors note the discrepancy in mo-
lecular weight and transport kinetics between their therapeutic
and vascular permeability imaging agent. It is presumed that RT dis-
rupts the vasculature, altering permeability, while at the same time
affecting tumor IFP. Separating the contribution of these two im-
pacts on the accumulation of nanomedicines is challenging and
will be further discussed in Section 6.

HT can increase vascular permeability, increasing the accumulation
of ChT.
4. Tumor pO2

Tumor pO2 plays an important role in dictating cancer biology and
response to a range of therapies. While, tumor physiology (e.g. perfu-
sion of blood within the tumor) plays a central role in dictating pO2.
Hypoxia is defined as a reduction in pO2 levelswithin tissues that results
in impairment of normal biological function [142]. The related con-
dition, hypoxemia, occurs when there is an O2 deficit in arterial
blood [143]. Several major factors contribute to the onset of hypoxia
in tumors [144]. It is well understood that the rapid formation of the
vascular network within tumors often results in distances between
capillaries that are longer than the diffusion distance of O2 (i.e. ~100
–200 μm) [145,146]. This is referred to as diffusion-limited or
chronic hypoxia as the underlying biological conditions will con-
tinue to persist [147]. Conversely, intermittent vascular fluctuations
can result in rapid onset hypoxia commonly referred to as
perfusion-limited, cycling, or acute hypoxia [148]. Cycling hypoxia
constantly occurs throughout the tumor volume and can be driven
by several factors [149]. The most important driver of cycling hyp-
oxia is red blood cell flux through microvessels [150]. Kimura et al.
employed window chamber models of R3230Ac mammary adeno-
carcinoma in rats along with fluorescence microscopy and O2

microneedles to measure perivascular pO2 [151]. They demon-
strated that red blood cell flux correlated with pO2 and decreases
in red blood cell flux were sufficient to induce cycling hypoxia (i.e.
tissue p02 < 3 mmHg). pO2 correlated more closely with red blood
cell flux in regions of lower vascular density. O2 consumption and
vascular stasis can also induce acute hypoxia, although these phe-
nomena are less common. O2 consumption within the tumor can
reach levels such that hypoxemia is induced within the arterial
blood supply, causing hypoxic conditions in tumor tissue further
downstream [144]. Vascular disrupting agents and RT can result in
vascular shutdown leading to acute hypoxia and cancer cell necrosis
[152]. The pO2 in arterial blood is ~75 – 100mmHg [153], whereas in
normal tissue it is frequently between 10 – 80 mmHg, depending on
the tissue type [154]. Tumor tissue pO2 is frequently less than 5 –
10 mmHg and this threshold can be used to designate regions of
hypoxia [155]. Dewhirst et al. measured arteriolar and peri-
arteriolar pO2 in tumor and normal tissue in rats bearing R3230Ac
carcinomas implanted in window chambers [156]. Arteriolar pO2

averaged 97 mmHg, while there was a statistically significant differ-
ence in peri-arteriolar pO2 in tumor (i.e. 32 mmHg) compared to
normal tissue (i.e. 51 mmHg). For in vitro studies, moderate hypoxia
is often induced by exposing cells to environments containing ~1%
O2 [154]. These states can be maintained in order to mimic chronic
hypoxia. Acute hypoxia can be simulated in vitro by cycling expo-
sure of cells to ~0.1% O2 [154]. For preclinical studies, hypoxia is
often induced in animals by supplying breathing gases containing
lower concentrations of O2 (e.g. ~5 – 10%) compared to the 21% O2

that is commonly found in air [157].
4.1. Biological effects of hypoxia

The effects of hypoxia on tumors have been studied extensively. In-
deed, the 2019 Nobel Prize in Physiology or Medicine was awarded to
three scientists for their work in elucidating the role of hypoxia induc-
ible factors (HIFs) [158]. HIFs are transcription factors that modulate
genes in response to low pO2 within tissues in order to allow cells to
better survive in hypoxic conditions [159]. Many important studies
have demonstrated HIFs exert control over: angiogenesis [160], metab-
olism [161], intravasation [162], metastasis [163], cancer stem cells
[164], and immune evasion [165] in tumors [166]. Despite the mecha-
nisms that allow tumor tissue to survive under hypoxic conditions,
prolonged hypoxia is known to lead to cell death and areas of necrotic
tissue within tumors [142]. Given that hypoxia is implicated in so
many disease processes that increase the risk of cancer, it is not surpris-
ing that hypoxia is a major risk factor for patients with many types of
cancers. Several current clinical trials involve detecting hypoxia for pa-
tient stratification and novel, hypoxia-activatable ChT are in develop-
ment [167]. However, given the influence of pO2 on the efficacy of a
number of therapeutic strategies, measurements of hypoxia (i.e. base-
line and post-treatment) should be incorporated into a wider range of
clinical trials, particularly those purporting to alter pO2 [168].

4.2. Hypoxia inhibits the efficacy of RT

Hypoxia research has been prioritized largely because of the impact
of pO2 on the efficacy of RT. Clinically, most RT is administered by ioniz-
ing radiation that consists of photons, a form of energy with relatively
low linear energy transfer (LET) [169]. Proton and carbon beam RT are
higher LET modalities, exert more direct damage to target DNA, and
therapeutic effect is less dependent on pO2 [170–172]. Conversely,
most DNA damage caused by standard photon RT (referred to through-
out this text as RT) is the result of energy absorption within tissue cre-
ating free electrons and subsequently free radicals that damage DNA
[173]. The oxygen fixation hypothesis states that in the presence of O2,
damage induced by free radicals is made permanent [174]. Many of
the free radicals produced are highly reactive, oxygen containing mole-
cules known as reactive oxygen species (ROS) [175]. In hypoxic envi-
ronments, fewer ROS are produced when cells are irradiated [176].
Many studies have shown a dependence of RT efficacy on pO2 both
in vitro [177–179] and in vivo [180–182]. The O2 enhancement ratio
(i.e. the factor by which the presence of O2 increases the cell killing of
RT at an isoeffect) is generally reported to be ~2 – 3 [183]. Regions of
acute hypoxia that contain less than 5 mmHg pO2 tend to be highly
radioresistant [183]. Given the detrimental effect of hypoxia on RT,
there is great interest in identifying patients with hypoxic tumors and
developing approaches to sensitize hypoxic tumor regions to RT.

4.3. Treatment options for hypoxic tumors

Traditional ChT and RT approaches are less effective in treating can-
cer cells within hypoxic environments compared to cells under
normoxic conditions [184,185]. Limited efficacy of conventional ap-
proaches is of concern given the dangerous potential for invasive
growth and metastatic spread [166]. The two main therapeutic ap-
proaches to treating hypoxic tumors involve: (1) novel classes of
drugs that are active under hypoxic conditions and (2) changing the ox-
ygenation conditions within the tumor.

4.3.1. Direct treatment of hypoxic tissue
Thefirst challenge that needs to beovercome inChT treatment of hyp-

oxic cancer cells is delivering the drug to the affected area. Hypoxic tumor
regions lack functional vasculature, preventing access for many tradi-
tional ChT drugs that are only able to diffuse short distances from blood
vessels [186]. Diffusion is physically limited by stromal components of
the tumor microenvironment, and also by consumption of ChT by cancer
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cells [186]. Lack of nearby functional vasculature is an even bigger imped-
iment for nanomedicines because they rely on convection fromblood ves-
sels for access to cancer cells. Smallmolecule agents that are able to access
hypoxic tumor regions are further hindered by the biological differences
between hypoxic and normoxic cancer cells. Hypoxic cancer cells divide
less rapidly, limiting a primary mechanism of action of many ChT
[187,188]. In order to overcome these challenges, hypoxia-activated
prodrugs that undergo chemical reduction in regions with low pO2 have
been designed [189]. However, to date clinical success has been lacking.
Spiegelberg et al. attribute this to clinical trial designs that do not incorpo-
rate hypoxia biomarkers and lack corresponding patient stratification
[190]. While RT is known to be less effective in treating hypoxic cancer
cells, a number of radiosensitizers have been developed in order to over-
come this issue [191]. Most radiosensitizers designed to act in hypoxic
cells replace oxygen in forming reactive free radicals that can interact
with and damage DNA following RT [192]. Clinical development of
these agents has been stunted by an inability to balance the toxicity of
the agents and the high doses required for radiosensitization [193]. Clini-
cal progress has also been hampered by a failure to select patient popula-
tions with hypoxic regions within tumors [191].

Many researchers consider the treatment of hypoxic tumors to be the
most compelling use of HT [61,184]. A great deal of research has been
done on the ability of HT to treat hypoxic cells [194–196], but rather
than directly affecting hypoxic cells, HT exerts several indirect effects
that impact hypoxic tumors. HT is able to directly kill cells given sufficient
time and temperature exposure, although the cytotoxic threshold varies
depending on cell type [197]. The HT-induced cell killing process is not
perfectly understood, but combines apoptosis, necrosis, andmitotic catas-
trophe [198,199]. It is believed that protein denaturation is the cause of
these cytotoxic effects [61]. HT is able to exert a greater cell killing effect
in hypoxic cell populations, but rather than being driven by pO2 within
the cells, themain factors seem to bepHandpossibly nutrient deprivation
[200,201]. The studies by Overgaard and Bichel as well as Gerweck et al.
noted that the increased sensitivity to HT observed under hypoxic condi-
tions can be reversed by returning the pH to physiological conditions. Fur-
thermore, chronic hypoxia conferred much more sensitivity to HT
compared to acute hypoxia, indicating that nutrient status and the health
of cells was more of a determining factor than pO2 levels. Section 5 de-
scribes the processes under which hypoxic tissue often becomes acidic.
Cancer cells within hypoxic tumors are often nutrient deprived and
existwithin a lower pH environment [202,203]. Furthermore,many stud-
ies have shown thatHT-induced cell killing is increased through combina-
tion therapy with agents that limit blood flow and thus decrease tumor
pO2 [204]. While ablative therapies have proven clinical benefit at ele-
vated temperatures (i.e. > 60 °C) [205], clinical translation of direct killing
of cancer cells by HT (i.e. ~45 °C) has proven less efficacious [69]. This is
largely due to the fact that elevated temperatureHTdoes not act synergis-
ticallywith established treatmentmodalities such as RT andChT. Elevated
temperature HT is not as amenable to fractioned treatments suitable for
combining with RT and ChT and does not induce the physiological re-
sponses discussed in this review that improve RT and ChT efficacy.

Increasing the sensitivity of hypoxic cells to RT is a more promising
clinical approach and is important given the radioresistance normally
associated with hypoxic cells. HT sensitizes hypoxic cells to RT both by
inhibiting DNA damage repair induced by RT and by increasing tumor
pO2 therefore increasing DNA damage. HT sensitizes all cells to RT in a
time dependent manner by degrading proteins related to DNA damage
repair [206,207]. Repeated studies have shown this sensitization to have
the biggest impact when RT and HT are delivered simultaneously with
decreasing sensitization as HT is delivered at longer time intervals be-
fore or after RT [23,208]. This method of RT sensitization affects both
hypoxic and normoxic cells equally because the mechanism of sensiti-
zation is not O2-dependent, but related to DNA damage repair [209].
However, HT is able to preferentially sensitize hypoxic cells to RT
in vivo by increasing tumor blood flow and therefore tumor pO2. Iwata
et al. demonstrated that several different HT protocols can increase
tumor pO2 in both mice and rats [210]. HT (41.5 °C, 1 h) increased
pO2 from 6.5 to 16.6 mmHg. This effect was persistent with increased
pO2 stillmeasured 24h followingHT. A similar effectwas noted in rat tu-
mors with pO2 increasing from 3.7 to 12.2 mmHg following HT (42.5 °C,
30min). Many preclinical studies have demonstrated that adding HT to
RT regimens improves the treatment of hypoxic tumors [211–213]. Sun
et al. examined the effect of HT on hypoxia in HT29 human colorectal
adenocarcinomas [93]. Tumors were heated for 45 min at 41 °C and
hypoxia was assessed prior to HT using pimonidazole and during or
after HT using EF5. Perfusion was assessed by intravenous Hoechst
33342 assessment prior to sacrifice and CD31 immunohistochemistry.
This HT protocol increased perfusion and reduced overall hypoxia.
However, the decrease in hypoxia was not sustained and did not persist
24 h following HT. Furthermore, in addition to a reduction in the overall
hypoxic fraction of the tumor, new regions of hypoxia were also re-
ported following HT. However, it is possible that these were normal
temporal changes in tumor pO2 unrelated to HT treatment. Griffin
et al. employed water bath induced HT at 41.5 °C for 45 min to study
the effect of radiosensitization in fibrosarcoma and mammary carci-
noma models in mice [214]. They found that HT decreased the fraction
of hypoxic cells in both tumor models by ~3.5-fold. In both tumor
models, HT significantly improved the efficacy of a single 20 Gy RT frac-
tion in terms of tumor growth delay and surviving cell fraction as deter-
mined by ex vivo clonogenic assay.

4.3.2. Increasing tumor pO2

As discussed earlier in Section 2 of this review, HT can increase
tumor blood flow. Sun et al. demonstrated that HT (41 °C, 45 min)
-mediated increases in blood flow resulted in increased tumor pO2,
but the impact was short-lived [93]. In canine tumors of up to 400
cm3 in volume, Thrall et al. studied the effect of two thermal doses of
MW HT on tumor pO2 [215]. Dogs received a total dose of either 10 or
40 CEM43T90 (isoeffective cumulative exposure that considers the
90th percentile temperature as opposed to the median temperature for
CEM43). Both thermal doses were able to increase oxygenation in tu-
mors exhibiting low pO2 (0 – 4.1 mmHg) prior to treatment. However,
the higher thermal dose reduced pO2 in tumors with higher initial oxy-
genation values. Thermal dose of HT and baseline levels of pO2 must be
carefully considered in treatment planning. Thrall et al. built on this
study by examining the effect of fractionating treatments with equiva-
lent total thermal doses of ~30 CEM43T90 in 37 spontaneous canine tu-
mors with dogs receiving 1 vs 3 – 4 fractions per week [216]. While
there was no significant difference in oxygenation effect between the
treatment groups, a significant increase in tumor pO2 compared to base-
line was recorded for both treatment groups. This study is significant in
that it demonstrates the ability of repeated HT treatments to increase
tumor pO2 over a significant period of time (i.e. 5 weeks). To date, opti-
mized fractionation of thermal dose has yet to be determined in large
animal models and human subjects.

Other approaches to increase tumor pO2 have focused on temporar-
ily increasing blood pO2 and include hyperbaric O2 chambers [193,217],
administration of 100% O2 or carbogen (5% CO2, 95% O2) [183], artificial
O2 carriers based on either hemoglobin or perfluorocarbon emulsions
[218] [191], and drugs such as efaproxiral that modulate O2-
haemoglobin binding affinity [219,220]. These interventions are tran-
sient whereas RT is frequently fractionated over many days and ChT
can act over a longer timescale, making a more sustained increase in
tumor pO2 desirable. The excellent safety profile of HT makes it a
more compelling candidate compared to some other interventions.
However, the most efficient method to increase tumor pO2 is to reduce
O2 consumption within tumors [221]. Zanella et al. demonstrated that
metformin was able to decrease O2 consumption of several cancer cell
lines in vitro and that this translated to a decrease in hypoxia within tu-
mors following intravenous administration (100 mg/kg) of metformin
[222]. They further demonstrated that this decrease in pO2 led to im-
proved RT (15 Gy single dose) efficacy in tumormodels in mice bearing
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HCT116 human colorectal carcinomas. The promise of clinical transla-
tionwas suggested by a retrospective study of 504 patients that had re-
ceived RT. Patients receivingmetformin exhibited a significant decrease
in early biochemical relapse. In another study, Benej et al. employed a
clinically approved drug in order to reduce O2 consumption and in-
crease tumor pO2 [223]. Papaverine reduced hypoxia and significantly
increased RT (5 Gy single fraction) efficacy in EO771 murine breast tu-
mors and A549 human lung tumors in mice.

Tumor vascularization was identified by Judah Folkman as a critical
aspect of tumor development [224]. Hanahan and Folkman termed
the rapid onset of neovascularization and ensuing tumor growth the
‘angiogenic switch’ [225]. The signaling protein VEGF, specifically the
type VEGF-A, is largely responsible for regulating this process
[226–228]. Following this angiogenic switch, many tumors exhibit tor-
tuous, heterogeneous vascular structures that deliver insufficient O2

and nutrients, while also preventing sufficient delivery of ChT.
Sustained angiogenesis was included as a hallmark of cancer by
Hanahan and Weinberg in their seminal paper published in 2000
[229]. Rakesh Jain has proposed the concept of vascular normalization
whereby the tumor vasculature is modified to more closely resemble
the vascular networks of normal tissue [230]. This is achieved by
correcting the imbalance between pro- and anti-angiogenic signaling
via administration of a carefully determined regimen of anti-
angiogenic therapy [231]. However, clinical translation of this therapeu-
tic intervention is difficult because the dose of anti-angiogenic drugs
must fall within a narrow window such that the dose is sufficient to
stem unchecked growth, but not so high as to shut down vasculature
growth completely [232]. Patient heterogeneity and spatial and tempo-
ral variability in tumor vascularization and angiogenic signaling further
complicate dose selection and treatment. While it may seem counterin-
tuitive, low dose anti-angiogenic therapy has led to increased tumor
pO2 in multiple preclinical models [233–235].

HT has the potential to play a similar role in rebalancing pro- and anti-
angiogenic factors, resulting in more normal tumor vasculature. As previ-
ously discussed, application of HT (i.e. < 42 °C) can increase blood flow
and pO2 within tumors. An increase in pO2 results in a reduction of HIFs
and a corresponding decrease in pro-angiogenic signaling. Conversely,
HT at higher temperatures (i.e. > 42 °C) can damage the vasculature
and result in an increase in pro-angiogenic factors. Kanamori et al. applied
water bath HT for 30min at 44 °C tomice bearing squamous cell carcino-
mas (SCC VII) [236]. Under these conditions HT can have anti-vascular ef-
fects. Indeed, HT or intravenous administration of the anti-angiogenic
drug TNP-470 both resulted in necrosis within the central regions of tu-
mors and an increase in VEGF expression. However, Sawaji et al. found
a significant decrease in serum levels of VEGF in patients 2 – 3 weeks fol-
lowing completion of whole body HT treatments (42 °C, 1 h) [237]. Time-
dependent HIF and VEGF expressionmay further complicate pursuing HT
as a strategy for balancing angiogenic factors. Moon et al. determined that
at temperatures between 41-44 °C, HT induced HIF activation in vitro in
two human cancer cell lines [238]. They further measured increased HIF
and VEGF expression in vivo up to 24 h and 48 h, respectively, following
treatment. The temperatures employed in these studies are likely also
critical in achieving the desired therapeutic outcomes. It is possible that
a version of vascular normalization can be achieved through the applica-
tion of HT rather than pro- and anti-angiogenic factors. Interestingly, Sen
et al. reported that the use of low temperature, whole body HT (39.5 °C, 6
h) was able to increase blood flow and decrease the hypoxic fraction of
the tumor as measured by intravenous administration of pimonidazole
hydrochloride and immunohistochemistry analysis [239]. In addition to
increasing blood flow and reducing hypoxia, HT reduced IFP and im-
proved the efficacy of RT. It is presumed that ChT efficacy would also be
enhanced.

HT can increase pO2, improving RT efficacy.
5. Tumor pH

5.1. Altered glucose metabolism

The acidic or basic nature of the tumormicroenvironment is of interest
from a therapeutic standpoint and it is inextricably linked to tumor pO2.
The tumor microenvironment tends to be more acidic compared to nor-
mal tissues and this is largely caused by altered glucose metabolism.
Cells within the body derive energy from cellular respiration, whereby
glucose and oxygen are converted to carbon dioxide and water via an in-
termediary pathway involving the breakdown of pyruvate via the citric
acid cycle and oxidative phosphorylation [240]. However, the tumor mi-
croenvironment is often deficient in oxygen as previously discussed in
Section 4. The Nobel laureate Otto Warburg hypothesized that in the ab-
sence of oxygen, cancer cells produce energy via anaerobic respiration
[241]. The anaerobic respiration pathway begins in the same manner as
aerobic respiration, but ends with the conversion of pyruvate to lactate,
a process that produces far less energy. Adenosine triphosphate (ATP)
molecules are the standard energy units of molecular biology and
only two are produced when converting glucose to lactate. Con-
versely, full aerobic respiration can result in production of far
more ATP molecules (i.e. ~30 – 38 total) [240]. However, the rate
at which anaerobic glycolysis occurs is much faster, allowing the
two forms of metabolism to produce similar amounts of ATP over
the same timeframe [242]. Therefore, cells producing ATP via con-
version of glucose to lactate consume far greater amounts of glucose
compared to normal cells under standard aerobic respiration. It has
been observed that even in the presence of oxygen, many cancer
cells metabolize glucose to lactate rather than the oxidative phos-
phorylation pathway that produces more ATP. In the 2011 update
to their Hallmarks of Cancer, Hanahan and Weinburg added
‘Reprogramming Energy Metabolism’ as an emerging hallmark, spe-
cifically recognizing the work of Warburg from 80 years prior [243].
This approach results in tumors consuming far more glucose than
normal tissue. Indeed, this increased glucose consumption is the
basis on which fluorodeoxyglucose-PET imaging differentiates be-
tween cancerous and normal tissue [244]. While there are similari-
ties between tumor regions with low pO2 and low pH, it is
important to note that these regions do not necessarily co-localize
[245]. Variability in intravascular blood pO2 and blood flow can
cause spatial variations in both pO2 and pH distribution within the
tumor, contributing to this disparity.

While there is ongoing debate as to the advantage gained by cancer
cells through this metabolic reprogramming, the effect on the pH of the
tumor microenvironment is clear [242]. Intracellular conversion of glu-
cose to lactate (i.e. the conjugate base of lactic acid) produces hydrogen
ions within the cytosol [246]. While lactate can be used as a nutrient by
cancer cells [247,248], the hydrogen ions are a less desirable product.
The intracellular pH (pHi) of cancer cells is generally slightly more alka-
line (i.e. ~7.3–7.6) than that of normal cells (i.e. ~7.2) [249–251]. In
order to maintain these pHi conditions, cancer cells shuttle hydrogen
ions across the cell membrane primarily via the sodium/hydrogen ion
exchanger NHE1 and the hydrogen/lactate transporter [252], resulting
in acidification of the surrounding tumor microenvironment. Gillies
et al. surveyed the literature and found that extracellular pH (pHe)
was generally more acidic than pHi in a wide range of preclinical cancer
models [253]. Prescott et al. first demonstrated that this was also the
case in spontaneous tumors in a study of 31 dogs with soft tissue sarco-
mas [254]. Despite this overall trend holding, they observed wide vari-
ability in both pH values and cases where pHe > pHi. Overall, altered
glucose metabolism results in pHe of the tumor microenvironment
(i.e. ~6.8–7.0) being more acidic compared to pHe of many normal
tissues (i.e. ~7.4) [251].
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5.2. Biological impact of acidic tumor pH

The pH of the tumor microenvironment is particularly important
because multiple studies have correlated acidic conditions within
the tumor with more aggressive disease phenotypes. A large body of
research generated by Drs. Gillies and Gatenby has demonstrated
that acidic metabolites cleared from tumor tissue can accumulate in
surrounding normal tissue, acidifying the tissue microenvironment
[255–258]. Normal cells in the surrounding tissue do not effectively
maintain transmembrane pH gradients in acidic environments,
resulting in lower pHi and finally cell death. The resulting lack of viable
cells and lower pH in the tissuemargins bordering the tumor create an
ideal environment for the neighboring cancer cells to invade. Metasta-
tic spread is thought to depend on cancers cells undergoing the pro-
cess of epithelial-mesenchymal transition (EMT) [259]. New
research suggests that cells in lower pH environments are more
prone to undergoing EMT [260]. Acidic tumor microenvironments
are therefore more likely to produce metastatic disease. Low pH
tumor microenvironments have also been associated with impair-
ment of immune cell function [261]. Immunosuppression, oftenmedi-
ated by release of immunoregulatory cytokines, allows tumors to
grow unchecked by the body’s natural defenses [262]. It is therefore
of primary concern to effectively treat cancer cells that reside within
acidic tumor regions as they are likely to be of a more aggressive
phenotype.

5.3. Acidic pHe compromises therapeutic efficacy

The acidity of the tumor microenvironment has a direct impact on
the efficacy of conventional anti-cancer treatments. Many commonly
used anti-cancer drugs (e.g. paclitaxel, doxorubicin, mitoxantrone)
are less effective when the pHe is 6.5 rather than 7.4 [263,264]. A
major contributing factor to this effect is that many ChT agents are
weak bases that are charged in acidic environments, which prevents
them from readily crossing the cell membrane [265]. A strategy to
avoid this pitfall is to develop ChT drugs that are weak acids that are
uncharged in the slightly acidic tumormicroenvironment, but charged
at more alkaline pHi. Drugs with these chemical properties would
readily cross the cell membrane at tumor pHe and subsequently be-
come entrapped in cancer cells at pHi. Gerweck et al. used intravenous
glucose administration to slightly acidify the tumor microenviron-
ment and observed an improvement in the anti-tumor efficacy of the
weak acid chlorambucil [266]. Conversely, glucose-mediated acidifi-
cation of the tumor microenvironment had a negative effect on the ef-
ficacy of the weak base doxorubicin. This study is an interesting
application of leveraging the altered glucose metabolism of cancer
cells to tailor the tumor microenvironment and optimize the efficacy
of specific drugs. Other work suggests that acidic pHe can increase
the intracellular activity of P-glycoprotein (P-gp) in some cancer
cells, resulting in a decrease in ChT cytotoxicity that can be reversed
by co-administration of a P-gp inhibitor [267]. P-gp is also known as
multidrug resistance protein 1 and plays an integral role in efflux of
many traditional ChT from cancer cells, rendering drugs less effective
[268]. This effect further hinders the efficacy of many anti-cancer
drugs being used to treat cancer cells in acidic microenvironments.
The efficacy of several other therapeutic interventions is also compro-
mised at pHe acidic. While not a dominant effect, particularly com-
pared to the radioresistance of hypoxic cells, studies have also
shown that cancer cells exhibit a limited amount of additional
radioresistance at lower pH [269,270]. Even newer immunotherapies
have been shown to be less effective in treating tumorswith acidicmi-
croenvironments because of the previously described immune sup-
pression [271]. Thus, it is incumbent to develop alternative
treatment strategies that are either efficacious in killing cancer cells
at acidic pH or that alter the pH of the tumormicroenvironment, mak-
ing cancer cells more susceptible to traditional ChT.
5.4. HT is preferentially cytotoxic to low pHi cancer cells

Many studies have demonstrated that HT ismuchmore toxic to cells
in acidic environments compared to those at physiological pH [272].
This fact led to the exciting premise that HT could be used to selectively
target cancers cells as they often reside in a more acidic milieu com-
pared to normal cells. However, in vitro studies blocking the Na+/H+
exchange demonstrated that acidic intracellular, rather than extracellu-
lar, pH dictates the sensitivity of cancer cells to HT [273]. It was later
demonstrated that blocking the heat shock protein response at acidic
intracellular conditions confers heat sensitivity [274]. The dependence
of hyperthermic cell killing on acidic pHi is crucial as it has also been
shown that cells chronically exposed to lower pH environments are
able to maintain pHi much closer to physiological conditions [275].
Thus, it would seem that the selective toxicity of HT to cancer cells com-
pared to normal cells is largely limited by the ability of cancer cells to
adapt to their microenvironment. However, under conditions of acute
hypoxia, cancer cells at low pHe become unable to maintain a trans-
membrane pH gradient, resulting in a drop in pHi [276] that makes
these cells sensitive to HT treatment. Spees et al. have completed a thor-
ough study inducing acutely lower pHi in murine tumors by either gly-
colytic or non-glycolytic methods [277]. Using 31P-MR spectroscopy
(MRS), they determined that both approaches decreased pHi within
the tumor and that for both methods of altering pHi, there was a linear
relationship between pHi and sensitivity to HT (i.e. lower pHi,more sen-
sitive to HT) (43 °C, 30min). HTmay therefore be an effectivemethod of
treating cancer cells under conditions of acidic pHe and acute hypoxia
that would otherwise be RT- and ChT-resistant.

5.5. Raising tumor pHe to increase ChT efficacy

One treatment approach for acidic tumors is to use therapies that are
effective at lower pH. The other approach is to increase the pHe of the
tumor in order to make conventional therapies more effective. One
promising approach is being explored by Dr. Gillies group involves
oral administration of bicarbonate provided to mice ad libitum in their
drinking water [278]. Robey et al. demonstrated that this approach in-
creased pHe, but not pHi within tumors and observed a corresponding
decrease in metastatic spread of MDA-MB-231 human breast cancer
cells [279]. Subsequent work by Pilon-Thomas et al. further demon-
strated that oral administration of bicarbonate improved tumor re-
sponse to several immunotherapies including PD-1, CTLA-4, and
adoptive cell therapy [271]. Low pHe is caused by hydrogen ions pro-
duced during glycolysis that are not cleared due to inadequate blood
flow and lymphatic drainage in some tumor regions. Therefore, inter-
ventions such as HT that increase tumor blood flow could also be effec-
tive in raising tumor pHe. However, most literature does not support the
ability of HT to raise the pH of acidic tumor microenvironment. Wike-
Hooley et al. summarized a substantial quantity of literature describing
the relationship between HT and tumor pH [269]. Citing a number of
studies, they concluded that when HT was administered at tempera-
tures above 42 °C, a decrease in the pH of the tumor microenvironment
was observed [54,280,281]. They speculate that this may be caused by a
reduction in bloodflow, in general agreementwith current literature in-
dicating that higher HT temperatures (i.e. > ~42 °C) can reduce blood
flow in many tumor models. However, the observed reduction in pH
could also be the result of a switch towardsmore anaerobicmetabolism.
It has been noted that HT can upregulate HIFs [216,238] and that respi-
ration is more sensitive to HT compared to glycolysis [282]. This sug-
gests that an increase in blood flow may be able to raise the pHe of the
tumor closer to physiological levels, albeit in a transient manner, de-
pending on the duration of HT-induced increased in blood flow. Indeed,
Jayasundar et al. measured pHi and pHe using 31P-MRS and a fiberoptic
pH meter during and after 30 min HT treatments at 42 or 45 °C [283].
Treatment at 45 °C resulted in statistically significant decreases in
both pHe and pHi, whereas 42 °C HT increased pHe. It is hypothesized
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that these pH differences are driven by modulation of blood and could
be therapeutically relevant. It is presumed that in many cases lower
HT temperatures (i.e. < ~42 °C) are able to increase pHe within the
tumor and improve the efficacy of ChT. In a clinically relevant study ex-
amining the effect of tumor pH on the efficacy of RT + HT in spontane-
ous canine tumors, Lora-Michiels et al. determined that pretreatment
pHe is a strong prognostic factor for metastasis-free survival [284]. Of
the 30 animals studied, those with tumor pHe >7 had a hazard ratio
of 0.29 compared to tumors with a more acidic pHe. Interestingly, tu-
mors for which pHe reduced following HT had a better prognosis com-
pared to tumors for which pHe became more alkaline. The preceding
discussion on the impact of HT on pHe indicates a complex relationship
with outcomes very susceptible to differences in exposure. While more
work is required in this area, it is hoped that the development of MRS
capable of non-invasively determining intratumoral pHe and pHi will
enable elucidation of the relationship between HT and tumor pH.

HT can increase extracellular pH, improving RT efficacy.

6. Tumor IFP

The interstitium is the fluid filled compartment of extracellular ma-
trix that fills the volume between the vascular and lymphatic systems
and the parenchymal cells of tissues [285]. The tumor interstitium gen-
erally consists of stromal cells such as fibroblasts and immune cells and
the interstitial fluid that surrounds them [286]. The tumor interstitium
is an important consideration in drug delivery because densely packed
stromal cells represent a transport barrier that can be difficult to over-
come [287]. This topic has been expertly reviewed elsewhere [35], and
largely falls outside the scope of this review, as there have been few
studies on the effect of HT on tumor stroma [288]. The exception to
this would be the large body of literature studying the impact of ele-
vated temperatures on the immune response. This important topic has
been reviewed extensively [2,289–291] and is discussed in the context
of drug delivery elsewhere in this special issue. The fluid pressure
within the interstitial space impacts drug delivery and can be modu-
lated by various interventions including HT. In normal tissues both the
vascular and lymphatic networks regulate fluid pressurewithin intersti-
tial space [292]. However, in the tumor interstitium, fluid accumulates
in a process related to the EPR effect. Fluid collects in the tumor intersti-
tium due to the leakiness of the vasculature and is not adequately re-
moved due to impaired lymphatic drainage [293]. Hydrostatic
pressure in capillaries is generally about 10 – 30 mmHg, with pressure
dropping along the length of the capillary, resulting in fluid extravasa-
tion at the arteriolar end and reabsorption of fluid at the veniolar end
[286]. In normal tissue, pressure gradients between the vasculature
and interstitium are typically 10 – 40 mmHg [36], resulting in IFP that
is often atmospheric (i.e. 0 mmHg) or slightly negative. Leaky vascula-
ture and impaired lymphatic conditions in the tumor interstitium de-
scribed above can result in the tumor IFP equilibrating with the
vascular hydrostatic pressure (i.e. ~10 – 30mmHg). Tortuous blood ves-
sels can result in higher intravascular pressure [294], further increasing
tumor IFP [295]. Boucher and Jain demonstrated in preclinical models
that elevated microcapillary pressure correlated with increased IFP
[296]. Tumor IFP has typically been measured at 10 – 40 mmHg
[295,297–299], with values as high as 100mmHg having been recorded
[300]. Tumor IFP has been thoroughly reviewed elsewhere [36,286].
This section focuses on the implications of altered IFP on the efficacy
of ChT and RT as well as the potential role of HT in overcoming these
challenges.

6.1. How tumor IFP affects cancer

The effects of pressure on cancer progression are not as well under-
stood as other factors such as pO2 and pH. While tumors have compro-
mised lymphatic networks, they are not lymphatic naïve. It is well
understood that cancer cells can be transported out of the tumor via
the sentinel lymph node, often as a first step in metastatic spread
[301]. In high IFP tumors, more fluid will be drained through the
lymph nodes, increasing the chances for spread of the disease via the
lymphatic network [302,303]. Furthermore, the Swartz group have
demonstrated the autologous chemotaxis phenomenon wherein cells
secrete the chemokine CCL21 that convects along fluid pressure gradi-
ents towards draining lymph nodes [304]. Similarly, high IFP in the cen-
tre of the tumor causes fluid to flow towards the periphery and into
surrounding tissue [305,306]. This can drive invasion of cancers cells
as well as signalling molecules that prime the surrounding microenvi-
ronment for tumor infiltration [307]. High IFP tumors show greater ex-
pression of the proliferation marker Ki-67 compared to low IFP tumors
[308], indicating a more aggressive phenotype [309,310].

High IFP can also reduce blood flow, leading to regions of low pO2

and low pH in tumors and ultimately resulting in necrosis [311].
While it has been suggested that high IFP can also directly occlude
tumor vessels [311], it is likely that occlusion requires a significant pres-
sure contribution from growth-induced solid stress [312]. Nathan et al.
used real-time PCR to demonstrate anothermechanismbywhich IFP af-
fects tumor vascularization [313]. Osteosarcoma cells cultured in vitro
under elevated pressures (i.e. 20mmHg) expressed less VEGF-A (i.e. an-
giogenic factor) and more VEGF-C (i.e. lymphatic factor) compared to
cells cultured at atmospheric pressure. These resultsmirrored immuno-
histochemistry data from a patient population in which higher IFP tu-
mors correlated with decreased VEGF-A and increased VEGF-C. There
are therefore multiple ways in which tumor IFP affects cancer biology.

6.2. IFP has an adverse effect on ChT and RT

6.2.1. Effect of IFP on drug delivery
IFP exerts a strong influence on the efficacy of ChT as it is amajor fac-

tor affecting delivery of therapeutics to the tumor site as well as drug
distribution within the tumor. The pressure gradient between tumor
vessels and tumor tissue dictates the amount of fluid convection into
the tumor interstitium. While smaller molecules such as traditional
ChT drugs (e.g. doxorubicin, paclitaxel, cisplatin) rely on both diffusive
and convective transport, larger molecules such as nanomedicines and
antibodies are almost solely dependent on convection for transport
[33]. When pressure in the interstitial space is high, convection can be
completely eliminated, reducing transport of smaller molecules and
preventing transport of large molecules. The impact of elevated IFP on
drug transport is becoming amore important issue asmany new thera-
peutic agents for oncology have higher molecular weights than those
developed in the past.

Many preclinical studies have demonstrated that elevated tumor IFP
is a barrier tomacromolecular drug delivery. Eikenes et al. evaluated the
effect of IFP on the distribution and accumulation of antibodies in mice
bearing human osteosarcomas by measuring both microvascular and
interstitial pressures using micropipette and wick-in-needle tech-
niques, respectively [314]. The murine monoclonal antibody TP-3
binds to a specific osteosarcoma-associated cell surface antigen [315]
and was administered intravenously to mice. Collagenase administra-
tion was found to increase transvascular pressure gradients and de-
crease IFP, leading to both an increase in antibody accumulation
within the tumor and an increase in antibody penetration away from
tumor blood vessels. This study underscores the challenge in isolating
the individual contribution that each physiological factor exerts on
drug delivery. It is likely that degradation of collagen within the extra-
cellular matrix reduces physical barriers to transport and further con-
tributes to interstitial antibody transport. Indeed, it is known that
collagen content is inversely related to the apparent diffusion coefficient
[316] and thus collagenase administration would increase both convec-
tion anddiffusion.Netti et al. took the opposite approach and raised vas-
cular blood pressure in order to increase the intratumoral transvascular
pressure gradient and thereby increase antibody accumulation within
tumors [317]. The effect of both continuous and periodic administration
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of angiotensin II were compared in mice subcutaneously implanted
with the human colon adenocarcinoma LS174T. Theminretumomab an-
tibody binds the TAG-72 antigen present on the cancer cells used in this
study. Following radiolabeled minretumomab administration, blood
pressurewas altered and antibody accumulation in the tumorwasmea-
sured by gamma camera imaging. Both continuous and periodic admin-
istration of angiotensin II were able to increase antibody accumulation
in the tumor by approximately 40%. Fan et al. employed a liposome for-
mulation of imatinib in order to reduce tumor IFP in murine B16 mela-
noma tumors implanted inmice [318]. The responsewas sustainedwith
statistically significant reductions in tumor IFP at 2.5, 26, and 50 h fol-
lowing liposome administration. Interestingly, the administration of
free imatinib did not result in a decrease in tumor IFP. In vivofluorescent
imaging demonstrated that tumor primingwith imatinib liposomes sig-
nificantly increased the delivery efficiency of doxorubicin liposomes to
tumors. They determined the decrease in tumor IFP resulted from fibro-
blast inhibition, inhibition of platelet-derived growth factor receptor
beta, and the anti-angiogenic effects often associated with imatinib.
However, pretreatment with imatinib liposomes increased the efficacy
of both doxorubicin liposomes and free doxorubicin to the same degree,
indicating that the improvements in efficacy are more complex than
solely an increase in drug transport due to convection.

The group led by Rubin at Uppsala University has published exten-
sively on the effect of tumor IFP on drug delivery. The majority of this
work has focused on modulating tumor IFP and ChT efficacy through
the targeting of platelet-derived growth factor (PDGF) receptor and
VEGF receptor. PDGF is known to play a role in blood vessel formation
as well as autocrine signalling in epithelial cancers [319]. In 2000 they
demonstrated that imatinib, an inhibitor of PDGFR reduced tumor IFP
in subcutaneously implanted colon cancers in rats [320]. This resulted
in a significant increase in accumulation of 51Cr-EDTA (MW 339 Da) in
the interstitial space. Further work showed that imatinib was able to in-
crease the accumulation and efficacy of Taxol® as well [321]. In the
studies from the Rubin group Taxol (paclitaxel formulated in 65% buff-
ered saline, 25% ethanol, and 10%Cremophor EL)was administered sub-
cutaneously. Paclitaxel readily binds to protein [322,323]. Therefore,
administration via this route presumably results in macromolecular,
protein-bound drug reaching the site. Later work administered the
VEGF inhibitor bevacizumab to mice bearing subcutaneous human
KAT-4 thyroid carcinomas that are known to express high amounts of
VEGF [324]. Once again, anti-angiogenic treatment resulted in a
sustained decrease in tumor IFP. The combination of imatinib with
vatalanib, another VEGF inhibitor, demonstrated that combining PDGF
andVEGF inhibition is able to lower tumor IFP tomore than either single
agent [325]. Despite reducing vascular density in the tumor, while not
having an effect on tumor growth, the combination therapy enhanced
the efficacy of Taxol more than either imatinib or vatalanib alone. How-
ever, the authors found that the sequencing and timing of inhibitor ad-
ministration was crucial. Conversely, Tailor et al. demonstrated that
while the VEGF and PDGF inhibitor pazopanib is able to decrease
tumor IFP, there was also an increase in hypoxia, and no significant im-
pact onDoxil accumulation [326]. They speculate that the samevascular
normalization that reduced tumor IFP is also responsible for decreasing
vascular permeability and nanomedicine accumulation within the
tumor. Reducing perfusion in order to reduce tumor IFP and enhance
ChT is a delicate proposition that must be closely monitored.

6.2.2. Effect of IFP on RT
There is mounting evidence that tumors with elevated IFP are less

responsive to RT [327]. Landmark clinical trial results published by
Milosevic, Fyles, and Hill in 2001 revealed that cervical cancer patients
with higher IFP had a poorer prognosis following RT treatment [297].
A modified wick-in-needle technique was used to make IFP measure-
ments at multiple positions within each tumor for 77 individual pa-
tients. An additional prospective study at the same institution
determined that IFP is an independent prognostic factor in cervical
cancer patients [328]. Despite once again confirming that high IFP was
correlated with poor survival outcomes following RT, there was no cor-
relation between IFP and tumor oxygenation. Furthermore, there was
no link between IFP levels and other clinical prognostic factors for cervi-
cal cancer (i.e. tumor size and lymph node involvement). Later work
confirmed that IFP prior to RT is a prognostic factor for survival of cervi-
cal cancer patients [329]. The same correlation between high IFP and
radioresistance has also been observed in preclinical models. Rofstad
et al. measured IFP using awick-in-needle technique for intradermal tu-
mors and a Millar SPC 320 cathether for window chamber model xeno-
grafts [330]. Using cutoffs of ≤ 7mmHg and ≥ 9mmHg, they determined
that lower IFP tumors exhibited better tumor control for all treatment
doses ranging from 25 – 45 Gy. Importantly, this study also measured
a positive correlation between IFP and vessel tortuosity. Themechanism
by which high IFP induces radioresistance is not known, but Rofstad
et al. speculate that it may result from increased VEGF-A signaling
and/or increased tumor cell clonogenicity [331]. Milosevic et al. also
speculated that high IFP results in increased angiogenesis, partially ne-
gating the anti-vascular effect of RT [330]. Notably, high tumor IFP has
been shown to hinder RT treatment efficacy, regardless of pO2 [331].

6.3. Treatment approaches for high IFP tumors

High tumor IFP is a barrier to effective RT and macromolecular ChT.
As a result, there is interest in interventions that can reduce tumor IFP
and enhance the efficacy of existing treatments. The following sections
review ChT, RT, and HT interventions that have been evaluated to re-
duce high tumor IFP in order to improve treatment potential.

6.3.1. ChT-based approaches to treating high IFP tumors
Drug-based strategies are not generally developed with the explicit

goal of reducing tumor IFP, however several clinical studies have dem-
onstrated that small molecule ChT has the potential to do so. Curti
et al. characterized tumor IFP in melanoma lesions in patients receiving
ChT [300]. There was a strong correlation between patients who
responded to treatment and those who experienced a drop in tumor
IFP. Mean tumor IFP doubled to 54 mmHg in non-responders, but
dropped to 0 mmHg for patients who responded to treatment. There-
fore, ChT can potentially reduce tumor IFP, but this approach leaves
non-responding patients with more aggressive, difficult to treat, high
IFP tumors. Work by Taghian et al. measured IFP in breast cancer pa-
tients receiving sequential treatments of paclitaxel (nine cycles of 80
mg/m2 qw) and doxorubicin (four cycles of 60 mg/m2 q2w) [332].
The order of treatment was varied for the two patient groups. Tumor
IFP was reduced by 36% in patients receiving an initial paclitaxel treat-
ment, while doxorubicin treatment did not affect IFP. By the end of
both treatments, tumor volume was not significantly different in the
two treatment groups. Perhaps if the doxorubicin had been encapsu-
lated in a nanomedicine, the treatment order would matter as the de-
crease in IFP resulting from paclitaxel therapy would likely yield an
increase in doxorubicin accumulation. Griffon-Etienne et al. have dem-
onstrated the mechanism whereby conventional ChT reduces IFP in
two mouse models [333]. Taxanes caused apoptosis of neoplastic cells
within the tumor, reducing solid tissue pressure and decompressing
blood vessels. An increase in tumor blood vessel diameter was mea-
sured along with a drop in tumor IFP.

Several preclinical, drug-based approaches to reduce tumor IFP have
focused on modifying the tumor vasculature. Several studies that
employed agents including angiotensin II [317], imatinib
[318,320,325], bevacizumab [324], and vatalanib [325] have already
been discussed in the context of their utility in increasing the accumula-
tion ofmacromolecular drugs (Section 6.2.1). Skliarenko et al. examined
the ability of the anti-vascular agent ZD6126 to lower tumor IFP in mu-
rine fibrosarcoma (KHT-C) and human cervical cancer (CaSki) tumors
growing intramuscularly in mice [334]. The intention of this therapy
was to disrupt the tumor vasculature and prevent further fluid
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accumulation in the interstitial space. Indeed, this was effectivewith IFP
being reduced after 72 h to 25% of the pretreatment values in KHT-C tu-
mors and 30% of the original IFP in CaSki tumors. This intervention
would not be appropriate for combination with ChT as vascular trans-
port would be compromised, reducing overall drug delivery. However,
there are possible synergies with RT. Indeed, other anti-vascular agents
such as combreastatin A4 are known radiosensitizers. It is possible that
reduction of IFP is one mechanism of action. Podobnik et al. adminis-
tered the vasodilating agent hydralazine to mice bearing subcutaneous
anaplastic sarcoma F (SaF) tumors [335]. IFPwasmeasured by thewick-
in-needle technique and found to drop by a mean amount of 33% at
30min following hydrazine injection. There are therefore several differ-
ent means by which drugs can be employed to decrease tumor IFP.

6.3.2. RT-based approaches to treating high IFP tumors
Znati et al. employed the wick-in-needle technique to measure the

effect of RT on tumor IFP [336]. Fractionated RT at total doses of 10
and 15, but not 5 Gy reduced tumor IFP 24 h following treatment. Single
fractions of 10, 20, and30Gy also resulted in a significant, prolonged de-
crease in IFP. Of note, a single 30Gy treatment reduced IFP by 35% after 5
d and preceded a significant arrest of tumor growth. Our research team
studied the effect of RT on IFP in mice implanted with MDA-MB-231
human breast cancer tumors [337]. Similar to Znati et al. we found
that higher doses of RT were required to cause a sustained decrease in
IFP. Single fraction RT of 5 and 10 Gy did not result in statistically signif-
icant reductions in IFP, while 15 Gy resulted in lower IFP in tumors at 1
and 24 h post-RT. The effect of RT on tumor IFP is multifactorial and in-
cludes vascular damage, which reduces fluid flow to the tumor, as well
as direct cancer cell killing, which reduces cell density. Clinically, there
has been little study of the effect of RT on tumor IFP. Roh et al. measured
IFP in seven cervical cancer patients during fractionated RT [338]. RT
doses ranged from 39.6 to 60.0 Gy and decreased tumor IFP was ob-
served in four patients while an increase was measured in the other
three patients. It is therefore difficult to conclude that RT was able to re-
duce IFP. However, a reduction in IFP correlatedwith better clinical out-
comes and the authors suggest that IFP response to RT could be a
prognostic indicator of response to RT.

6.3.3. HT-based approaches to treating high IFP tumors
There have been several reports that HT is able to reduce tumor IFP,

although the mechanism of action has not yet been demonstrated. The
first evidence of the ability of HT to reduce tumor IFP came from Leunig
et al. in 1992 [339]. This study employed an allograft implantation of
hamster melanoma into the dorsal skin and water bath HT was admin-
istered at 43 °C for 30 or 60 min. HT treatment under these conditions
may reduce blood flow, but blood flow was not measured in this
study. At 48h followingHT, tumor IFPwas significantly lower in animals
that had receivedHT for 30min compared to control animals and signif-
icantly lower in the 60 min HT group compared to 30 min. Tumor
growth delay was also recorded in animals receiving HT compared to
control animals, suggesting that thermal effects were not just physio-
logical, but induced vascular damage and/or direct tumor cell killing.
Sen et al. employed a temperature controlled chamber to deliver mild,
whole body HT for 6 h at 39.5 °C (CEM43 = 2.8 min) to immune com-
petent mice bearing either murine colon tumor 26 (CT26), murine
mammary 4T1, or murine melanoma B16.F10 tumors [239]. A wick-
in-needle setup with a Millar MikroTip catheter transducer was used
to measure tumor IFP. A significant reduction in tumor IFP was mea-
sured for all three tumor models following HT and IFP continued to de-
crease for up to 24 h. Indeed, a sustained response was observed in
colon and melanoma tumors with IFP remaining at a reduced pressure
24h postHT (datawasnot reported for breast tumors). HTdid not affect
tumor growth for the colon or melanoma tumor models (data was not
reported for breast tumors). Sen et al. also reported an increase in
blood flow and blood vessel perfusion in the tumor following HT. It
therefore presumed that this lower temperature HT protocol would be
beneficial to both small and large molecule ChT and RT. The reported
sustained reduction in IFP is particularly important in ensuring suffi-
cient time for macromolecular drugs to accumulate. Our group mea-
sured a significant reduction in tumor IFP in MDA-MB-231 breast
cancer tumors that were heated for 20 min at 42 °C (CEM43 = 5 min)
[337]. Tumor IFP was reduced from 18 to 7 mmHg during the applica-
tion of HT. This treatment also resulted in a significant increase in
both the accumulation and distribution of a nanomedicine contrast
agent as well as improving the efficacy of Doxil. While higher tempera-
ture HT treatments are able to decrease IFP by disrupting tumor vascu-
lature, lower temperature HT treatments that increase blood flow as
well as decrease tumor IFP are a more promising strategy in combina-
tion with ChT.

HT can reduce IFP, improving ChT efficacy.

7. Triggered Release from Nanomedicines

Nanomedicine formulations have been designed to release their
drug cargo as a result of exposure to many external stimuli including
heat, pH, irradiation, specific wavelengths of light, US and several
other externally applied and endogenous factors [340–343]. Most of
these topics fall outside the scope of this review, but the subject at
hand necessitates a brief discussion of heat-triggered drug release, spe-
cifically thermosensitive liposome technology. This subject has been
thoroughly reviewed elsewhere [344–346], but any discussion of com-
bining HT and drug delivery would be incomplete without discussing
recent advancements in thermosensitive drug delivery. Also briefly
discussed are RT-triggered and pH-triggered nanomedicines.

7.1. HT-triggered release

The most clinically advanced HT-triggered nanomedicine is Celsion’s
ThermoDox®, which is currently undergoing Phase III clinical testing in
primary liver cancer (NCT02161562). Thermosensitive ChT have been
studied extensively and are discussed in other reviews in this issue
[347,348]. Advances in the thermosensitive drug delivery platforms
have been enabled by engineering developments in the technology
used to heat tissue [349,350]. Scientific advances in both HT-application
and drug delivery technologies combine to allow for spatially focused,
well-controlled drug release within target tissues. Targeted, heat-
triggered release is of particular interest in oncology where toxic ChT
agents can have debilitating off-target effects in normal tissue. TSL devel-
opment has been built on decades of research characterizing the
temperature-dependent permeability of lipid bilayers [351,352] and lipo-
somal drug carriers [353,354]. Lipid bilayers have a characteristic temper-
ature known as the melting temperature (Tm), above which the lipids
exhibit fluidity of movement and below which the bilayer is referred to
as solid with comparatively little displacement of the lipids. Liposomes
are nanometer- or micrometer-sized vesicles with an outer lamellae
consisting of a lipid bilayer. Thermosensitive liposomes exploit this Tm
in order to quickly release drug in response to HT.

While the majority of clinically approved nanomedicines are lipo-
somes [355], their primary clinical benefit has been a reduction in ChT
induced toxicity. This directly results in improved quality of life for pa-
tients, but there is still an unmet need to develop more efficacious
nanomedicines. Dr. Gregoriadis led the pioneering development of lipo-
somes as drug delivery carriers in the mid-1970s [356,357]. It was not
long after in 1978 that Yatvin et al. reported on the first use of heating
liposomes above their Tm in order to trigger release of encapsulated
cargo [358]. These liposomes were composed primarily of DPPC, with
DSPC added to raise the Tm. A 7:3 DPPC:DSPC liposome formulation
combinedwithmicrowave heating of tumors to 41.5 – 42.5 °C increased
tumor accumulation in mice 3-fold compared to free drug or liposomes
administered without HT [22]. However, advancement of this research
was limited by existing clinical heating technologies as well as insuffi-
cient stability of the liposomes through a lack of steric stabilization
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which, as the authors concluded, resulted in aggregation and formation
of multilamellar structures. The field of liposome research was greatly
advanced in the early 1990s with the discovery that conjugation of
PEG polymer chains onto the surface of liposomes enhanced liposome
stability and prolonged in vivo circulation [359,360].Work in the labora-
tories of Drs. Dewhirst and Needham at Duke University led to the de-
velopment of low-temperature sensitive liposomes (LTSL) that would
later become ThermoDox [361]. This formulation incorporated PEG for
steric stabilization and increased circulation. However, the revolution-
ary change to the formulation design was the incorporation of 10%
(mol) lysolipid in order to sharpen the Tm and provide a rapid on-set
of membrane permeability, resulting in burst release upon heating
[362]. Since this time, many other groups have advanced the field of
thermosensitive drug delivery by altering the lipid composition
[363,364], loading new drugs into the liposomes [365–367], or by opti-
mizing the heating protocol [368,369]. All of these approaches take ad-
vantage of heat-triggered burst release of drugs from thermosensitive
carriers, but they also benefit from HT-induced physiological changes
such as increased blood flow and increased vascular permeability that
increase drug accumulation in tumor (Fig. 4). Current TSL, including
ThermoDox, exhibit very fast drug releasewhenheated to temperatures
close to the Tm. Recent work from Motamarry et al. demonstrated
in vitro that at temperatures above 40 °C complete release of doxorubi-
cin occurred within 2 s [370], although a significant portion of drug re-
mains entrapped within the liposomes and is never released. Fast
release is important given that mean blood pool residence times within
tumors are generally on the order of seconds (i.e. 2 – 10 s) [371]. The
ability to trigger significant release within this short period of time al-
lows for significant drug release as soon as the nanomedicines reach
the preheated tumor. Drug is thus released in the tumor vasculature
and this leads to substantial amounts of extravasation of free drug into
the tumor interstitium [372]. Many groups have demonstrated that
TSL are able to significantly increase total drug delivery to tumors
[372,373] and result in improved efficacy [374,375]. Specific examples
are discussed in Section 8.

The power of HT to alter tumor physiology and increase sensitivity
to RT has been described in this review. Researchers have actively ex-
plored the ability of nanomedicine-based approaches to deliver
radiosensitizers to tumors [376,377]. However, traditional
Fig. 4. Heat-triggered intravascular drug release from thermosensitive liposomes. Following
liposomes within the tumor vasculature. Free drug penetrates from the vasculature into the su
nanomedicines are often limited by an inability to deliver
radiosensitizers to the most radioresistant cells within the hypoxic
core of the tumor. A recent report from Sadeghi et al. examined the
in vitro feasibility of loading the radiosensitizer pimonidazole into TSL
[378]. The same group has also explored the in vitro radiosensitizing ef-
fects of ThermoDox on human fibrosarcoma (i.e. HT-1080) cells [379].
Given the ability of TSL to increase tumor accumulation of drugs, these
formulations incorporating radiosensitizers represent promising ap-
proaches to further increase the radiosensitizing effects of HT.

7.2. RT-triggered release

RT-triggered nanomedicines are a relatively immature field of re-
search with few publications [343], but some recent advances indicate
potential future applications. Wu et al. prepared 134 nm cysteine-
modified G4.5 dendrimers loaded with doxorubicin [380]. Acidic pH
(i.e. pH = 5.0) and RT (i.e. 5 Gy) were used to trigger drug release
with release beingmediated by RT-induced generation of ROS and an al-
teration in the dendrimer structure as well as disulfide bond cleavage.
Release was not rapid compared to many other triggered release sys-
tems (i.e. 18% release at 8 h, 48% at 70 h). This is not an intravascular re-
lease system, but would be administered at a suitable time prior to RT
(e.g. 24 – 72 h). Deng et al. designed doxorubicin-containing liposomes
co-loaded with verteporfin and/or gold nanoparticles in order to ac-
tively trigger release by RT [381]. Release was triggered by 1, 2, or
4 Gy RT causing verteporfin to generate singlet oxygen, likely causing
oxidation of unsaturated lipids and bilayer disruption. This formulation
is promising as dramatic improvements in efficacy in mice bearing
human HCT 1116 colorectal tumors were observed for RT combined
with intratumoral (IT) injection of RT-triggered doxorubicin liposomes
compared to either RT or IT administration of traditional doxorubicin li-
posomes alone. However, the lack of a control group combining RTwith
either free doxorubicin or traditional doxorubicin liposomes makes it
difficult to assess the benefit of triggered drug release at this point.
Most recently, Misra et al. developed calcium tungstate (CaWO4) parti-
cles coated in PEG5k-b-PLA5k that encapsulate paclitaxel [382]. Inclusion
of the calcium tungstate core resulted in dose dependent in vitro drug
release from the nanoparticles at clinically relevant single RT fractions
of 2 and 7 Gy compared to particles not exposed to RT. IT administration
the application of HT, drug is quickly and efficiently released from the thermosensitive
rrounding tumor interstitium along a concentration gradient.



113M. Dunne et al. / Advanced Drug Delivery Reviews 163–164 (2020) 98–124
of the particles with RT resulted in a statistically significant improve-
ment in tumor control and survival compared to RT or the particles
alone. This study also lacked a control combining RT with a traditional
drug formulation in order to assess the effect of targeting. While the
penetration depth and conformal targeting of RT make it an appealing
drug triggering strategy, the use of IT administration of these agents
suggests a need for development of more stable formulations suitable
for intravenous administration.

7.3. pH-triggered release

Many macromolecular drugs have been designed to take advantage
of differing pH environments, primarily with the aim of releasing their
cargo in response to acidic pH conditions [383]. However, carriers that
are designed to release their drug cargo in response to the acidic extra-
cellular conditions of the tumor microenvironment can face difficulties
given that more acidic regions of the tumor are also likely to be the
least perfused regions. It ismore challenging for drug formulations com-
prised of larger particles to reach these more acidic tumor regions, po-
tentially preventing pH-responsive drug release at the desired
location. One of the approaches deemed most promising for develop-
ment of pH responsive advanced drug delivery systems involves those
that provide endosomal escape within tumors [384]. In particular,
drug carriers containing genetic material (e.g. siRNA, mRNA) must es-
cape endosomes before being degraded inside lysosomes [385]. Formu-
lations incorporating fusogenic molecules, often lipids, have
successfully been developed to accomplish this aim and are now having
a clinical impact [386,387]. However, this approach is not related to the
acidic tumor microenvironment arising from altered physiological pro-
cesses and is outside the scope of this review.

HT can trigger release of ChT from TSL, increasing tumor drug
accumulation.

8. Potential Impact of HT on Drug Delivery

This review has described the physiological impact HT exerts on tu-
mors.Many of these effects significantly alter the accumulation and dis-
tribution of both small molecule and nanomedicine ChT within tumors.
Table 1 summarizes these effects and the impact on drug delivery. Spe-
cifically, HT is able to increase blood flow, perfusion, and vascular per-
meability while decreasing IFP, resulting in an increased accumulation
of small molecule and/or macromolecular drugs. Additionally, HT can
increase the extracellular pH within tumors to values that are closer to
the conditions measured in normal tissues. This has a positive impact
on the efficacy of many weak base ChT. Finally, HT can trigger release
of drug from thermosensitive nanomedicines and further impact drug
distribution and accumulation. Each physiological change affects indi-
vidual drugs in a distinct manner that is dependent on the physico-
chemical properties of the drug. In addition to molecular weight,
factors affecting drug accumulation and distribution include logP, pKa,
and water solubility as these parameters influence circulation times,
protein binding, vascular permeability, and cellular uptake. Specific
Table 1
Physiological consequences of HT and the effect on small molecule and macromolecular
drug delivery.

Physiological Effect Predominant Impact on
Accumulation

↑ Blood flow ↑ Small/macro

↑ Perfused fraction ↑ Small/macro
↑ Transcytosis vascular

permeability
↑ Small molecules

↑ Paracellular vascular
permeability

↑ Macromolecules

↓ Interstitial fluid pressure ↑ Macromolecules
examples of HT altering drug accumulation and distribution profiles
within tumors are discussed below.

Moving from preclinical animal models to clinical treatment has
proven to be a particularly difficult transition in the cancer research
field. Comparative oncology seeks to bridge this gap by studying sponta-
neous cancers in companion animals to generate complementary infor-
mation when combined with traditional preclinical studies [388].
Companion animals represent a diverse population with intact immune
systems and complex tumor biology,more comparable to that of humans
[389]. The HT field has been advanced by many comparative oncology
studies that suggest clinical potential. Furthermore, canine tumour vol-
umes are generally more comparable to those in humans relative to
those in mouse, rat, and other commonly used preclinical cancer models.
Indeed, in a previously discussed study, Thrall et al. appliedMWHT to ca-
nine tumors of up to 400 cm3 in volume [215]. This is particularly impor-
tant in HT studies, as treatment protocols must be adapted for tumor
volume. As a result, canine tumor heating protocols more closely resem-
ble clinical practice. Hauck et al. completed important early stage safety
and toxicity studies of ThermoDox in spontaneous canine tumors [390].
ThermoDox was administered intravenously at a dose of 0.7 - 1.0 mg/kg
in a dose escalation study.MWHTwas applied for 30minduring drug ad-
ministration and for 1 h afterwards with a maximum median tempera-
ture of 44 °C in an effort not to reduce tumor blood perfusion. A
maximum tolerated dose of 0.93 mg/kg was identified and an average
tumor accumulation of 9.12 ± 6.17 ng/mg tissue was recorded (for 1
mg/kg dose). Matteucci et al. measured the effect of HT on nanomedicine
accumulation in spontaneous feline sarcomas [391]. 99mTc -labeled lipo-
somes, (similar in lipid composition to Doxil) were administered to cats
and tumor accumulation was measured by planar scintigraphy. Cats re-
ceived intravenous liposome injections at normothermic temperatures
and then again 48h later in combinationwithMWHT (60minwith ame-
dian temperature of 44.6 °C). HT increased liposome accumulation in all
14 animals for which measurements could be made. As this was a com-
parative oncology study, there was tremendous variability in tumor vol-
ume (1.2 to 236.2 cm3). However, there was no correlation between
tumor volume and the magnitude of increased liposome accumulation,
suggesting broad applicability of this HT regimen to increase
nanomedicine accumulation.

8.1. Impact of HT on drug accumulation

Many preclinical studies have demonstrated that HT is able to in-
crease tumor accumulation of a number of different ChT [392]. Medical
imaging and/or ex vivo tumor resection and drug extraction are the
most commonmeasurement techniques used to assess drug accumula-
tion. To accurately determine tumor accumulation, drug within the
tumor interstitium can be distinguished from drug in blood by
subtracting the blood pool contribution or by removing it entirely by
perfusing the vasculature with another fluid (e.g. saline). Microdialysis
techniques can also be used to measure drug concentrations directly
in tumor extracellular fluid [393]. Several recent preclinical studies
have confirmed the viability of these approaches with both small mole-
cules and higher molecular weight constructs. Farr et al. administered
free doxorubicin intravenously to mice and the Sonalleve MR-guided
high-intensity focused US (MR-HIFU) system was used to heat tumors
for 15 min with a mean tumor temperature of 41.2 ± 1.3 °C. 10 min
after treatment, the vasculature was flushedwith saline and a 2-fold in-
crease in doxorubicin concentration was measured in resected tumors
[394]. Jenkins et al recently reported that 60 min of water bath HT at
42.5 °C increased tumor accumulation of the FDA-approved photody-
namic therapy (PDT) agent, porfimer sodium, by 3-fold at 24 h follow-
ing administration [395]. Interestingly, HT treatment did not result in
an increase in porfimer concentration in the tumor immediately follow-
ing heating, indicating that HT altered tumor physiology over a longer
timescale. Importantly, in addition to increasing PDT agent accumula-
tion, the addition of HT resulted in a statistically significant
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improvement in anti-tumor efficacy of the PDT agent and laser stimula-
tion. Matteucci et al. intravenously administered 99mTc-labeled lipo-
somes and employed gamma scintigraphy imaging to assess the
impact of HT on nanomedicine accumulation in domestic felines [391].
Microwave application of local HT was applied to spontaneous tumors
for 60 min and in all 14 cats liposome accumulation was greater in tu-
mors post-HT compared to unheated tumors. This enhanced accumula-
tion persisted without diminishing until the end of the study at 18 h
post-administration. Similarly, Kleiter et al. combined administration
of Doxil and a tracer quantity of Doxil-like radiolabeled liposomes to de-
termine the effect of HT on liposome accumulation in fibrosarcoma
(MCA-R) tumors in rats [396]. The entire tumor volumewasmaintained
between 39 – 44 °C for 45min and tumor accumulationwas assessed by
in vivo gamma camera imaging, ex vivo gamma scintillation counting,
and ex vivo doxorubicin quantification. HT resulted in a 3- to 4-fold in-
crease in tumor accumulation at both 5 and 18 h. Our recentwork dem-
onstrated that HT can increase tumor accumulation of both free drug
and nanomedicines. Tumor accumulation of the free anti-cancer agents
cisplatin [365], doxorubicin, and alvespimycin [373] increased by 2- to
3-fold following external laser-based application of HT for 25 min at
42.5 °C. The impact of the same HT protocol on nanomedicine applica-
tion was assessed by computed tomography (CT)-based quantification
of iodine-containing liposomes in breast cancer models implanted
orthotopically in mice [337]. After subtracting vascular contributions,
it was determined that HT significantly increased accumulation by ~2-
fold in human MDA-MB-231 tumors, but did not increase tumor accu-
mulation in murine 4T1 tumors. As previously described for this study
in Section 6.3.3, the employed HT protocol was able to reduce tumor
IFP in MDA-MB-231 tumors, but not 4T1 tumors. This is presumably a
significant contributing factor in the impact of HT on nanomedicine ac-
cumulation in both tumor models. There is also data that suggests that
HT-mediated damage to cells within the tumor microenvironment
may increase the extravascular volume fraction available to
nanomedicines [397,398]. Furthermore, the timing of HT and ChT ad-
ministration is an important consideration. Kong et al. have elegantly
ascertained that HT (42 °C, 1 h) increased liposome accumulation
within tumors for 4 h following HT, but accumulation had returned to
baseline after 6 h [399]. Importantly, reheating after 8 h (42 °C, 1
h) did not recapitulate the increased accumulation profile, indicating
development of vascular thermotolerance. Frazier et al. measured the
effect of MR-HIFU heating (43 °C, 10 min) on the tumor accumulation
of both Evans blue dye and 51 kDa Gd-chelated N-(2-hydroxypropyl)
methacrylamide (HPMA) copolymers in mice bearing S-180 murine tu-
mors derived from a soft tissue sarcoma [400]. HT resulted in a ~2-fold
increase in Evans blue dye accumulation in the tumor at 5 h following
treatment. MR-imaging was performed every 15 min for 5 h following
injection of Gd-HPMA copolymers and HT treatment in order to accu-
rately determine the temporal effect of HT on accumulation. HPMA co-
polymers are an important drug delivery platform [401,402] and HT
was demonstrated to significantly increase their tumor accumulation
over a period of at least 5 h. Interestingly, the Ghandehari laboratory
that conducted this research concluded that under these HT conditions
(43 °C, 10min), HIFU increased tumor accumulation to a greater extent
compared to plasmonic photothermal therapy HT, which they had pre-
viously measured [403]. However, differences in animal and tumor
model necessitate further evaluation.

8.1.1. Impact of HT and TSLs on drug accumulation
Delivery of drugs via TSLs combined with HT significantly alters

drug accumulation profiles with intravascular release of relatively
high concentrations of drug generally resulting in increased tumor ac-
cumulation. In 1979,Weinstein et al. were the first to demonstrate the
increased tumor accumulation resulting from TSLs and HT [22]. TSLs
contained methotrexate and were administered to mice bearing mu-
rine Lewis lung carcinomas and HT was applied for 1 h at 42 °C. TSLs
and HT resulted in a 4-fold increase in tumor accumulation compared
to TSLs without HT and a 3-fold increase compared to free drug and
HT. Subsequent studies demonstrated the suitability of using TSLs to
increase tumor accumulation of other drugs including cisplatin [404]
and doxorubicin [405]. Kong and Dewhirst have summarized the
tumor accumulation values for many TSL formulations that preceded
the development of ThermoDox. More recently, Hijnen et al. reviewed
tumor accumulation literature for studies involving the use of MR-
HIFU HT protocols [406]. The majority of the studies summarized by
Hijnen et al. used ThermoDox or a similar formulation and most of
these studies reported that the addition of HT increased tumor accu-
mulation by 2.5- to 5-fold. Chen et al. demonstrated that ThermoDox
has anti-vascular effects [407]. A dose of 5 mg/kg was administered
in combination with HT (42 °C, 1 h) to mice bearing human xenograft
FaDu tumors. Red blood cell velocity and microvascular density was
significantly decreased 24 h following treatment compared to baseline
and relevant controls. This is not surprising given the large intravascu-
lar concentrations of doxorubicin produced by ThermoDox plus HT
and the anti-vascular effects of free doxorubicin [408]. However,
these alterations in hemodynamics may have implications for repeat
dosing and combinations with other therapies and warrant further
investigation.

8.2. Impact of HT on drug distribution

The preceding sections of this review detail the mechanisms
through which HT is able to improve the efficacy of RT by decreasing
the radioresistance of cells within the tumor that are otherwise diffi-
cult to treat. In doing so, HT is able to increase the proportion of the
tumor volume for which RT is an effective form of treatment. This par-
adigm is similar to the manner in which HT improves the efficacy of
ChT by increasing the proportion of the tumor that drugs are able to
access and treat. This is of importance given that the efficacy of ChT
is often limited by heterogeneous distribution throughout the tumor.
The distribution issue is of particular importance for antibodies and
nanomedicines that have been demonstrated to preferentially accu-
mulate in the periphery of the tumor [409,410] (Fig. 5). Drug distribu-
tion of small molecule drugs is also of importance. Trédan et al.
reviewed functional impediments to small molecule drug delivery in-
cluding lack of vascularization and stromal cell barriers [293] that pre-
vent complete eradication of tumors and therefore limit the utility of
ChT. Previous work from the same group has observed that themajor-
ity of drug that accumulates in tumors is locatedwithin several cell di-
ameters of blood vessels [411]. Increasing tumor drug accumulation is
only beneficial if more cells within the tumor are exposed to drug and
eradicated.

HT is able to improve the drug distribution profile within tumors by
delivering ChT to crucial regions thatwould otherwise not be treated. By
increasing the perfused fraction of the tumor and vascular permeability,
as well as decreasing interstitial fluid pressure, HT is able to increase
tumor accumulation and distribution of intravenously administered
ChT. In most tumors, the periphery is the most highly vascularized re-
gion and is generally accessible to most forms of ChT. Therefore, most
increases in blood flow and vascular permeability will deliver even
more ChT to the tumor periphery. While the benefits of this are proba-
bly limited, increased drug concentrations of diffusion-mediated small
molecule ChT will increase penetration distances of drugs into tumor
tissue, providing improvements in drug distribution. HT has also been
shown to transiently increase perfusion in the centre of the tumor
[93]. This is not surprising, given that HT improves RT efficacy in part
by increasing pO2 in hypoxic regions of the tumor. It is likely that in-
creased delivery of O2 to these regions would coincide with greater de-
livery of small molecule ChT.

The principles discussed above, combinedwith an increase in vascu-
lar permeability and a decrease in high tumor IFP, enable HT to improve
the distribution of macromolecular ChT. Therapeutic efficacy of long-
circulating, traditional nanomedicines is often improved by the addition



Fig. 5. High IFP prevents macromolecular drugs from accumulating within tumors.
Image illustrating the limited distribution of nanomedicines and large MW drugs in
tumor tissue with preferential accumulation at the tumor periphery and high IFP
precluding homogenous distribution throughout the entire tumor volume.
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of HT into the treatment regimen [337,412]. Computational modeling
suggests that the biggest impact HT exerts on nanomedicine accumula-
tion within tumors is the result of decreased tumor IFP [337,413,414].
High IFP is a major factor preventing convection-mediated transport
of nanomedicines into the tumor interstitium. IFP is commonly higher
in the centre of the tumor compared to the periphery [296]. Therefore,
by decreasing tumor IFP, HT should be able to preferentially increase
nanomedicine accumulation in the centre of the tumor. Our group pre-
viously employed CT imaging to demonstrate that HT was capable of
lowering tumor IFP and increasing the fraction of the tumor accessible
to a Doxil-like imaging agent [337]. Fractions of the tumor were consid-
ered to contain significant concentrations of contrast agents when the
signal intensity at that time was greater than the mean signal plus
two standard deviations for the tumor volume data prior to the admin-
istration of contrast [415]. This approach is limited by both the sensitiv-
ity of contrast agent detection (i.e. limit of quantification) and the
resolution of the medical imaging scanner, but allows for spatial and
temporal assessment of contrast agent accumulation in single animals.
Despite HT increasing accumulation 2-fold in MDA-MB-231 tumors at
the time ofmaximum tumor accumulation (i.e. 72 h), HT only increased
the enhanced tumor fraction at this point by 1.3-fold. However, the ki-
netics of accumulation were interesting as at early (i.e. 24 h) and late
(i.e. 168 h) time points the enhanced volume fraction was higher at
1.7- and 2.2-fold respectively.

8.2.1. Impact of HT and TSLs on drug distribution
The majority of studies examining the effect of HT on the

intratumoral distribution of ChT have employed TSL. Several studies
have qualitatively demonstrated that HT-triggered release of drug
from TSLs is better able to deliver drug to the centre of the tumor com-
pared to conventional ChT approaches. In human squamous cell carci-
noma xenograft tumors (i.e. FaDu), Kong et al. qualitatively assessed
the distribution of doxorubicin delivered as free molecules, Doxil-like
nanomedicines, or TSLs and administered with or without HT (42 °C, 1
h) [374]. Quantitatively, HT increase the tumor accumulation of both
traditional and TSLs. Qualitatively, TSLs and HT improved drug distribu-
tion such that more drug was observed in the centre of the tumor com-
pared to both free drug and traditional liposomes administered with or
without HT. Ranjan et al. employedMR-HIFU HT at 40.5 °C for 30min in
combinationwith thermosensitive doxorubicin liposomes [416]. In rab-
bits bearing intramuscular VX2 tumors, they measured a 7.6-fold in-
crease in doxorubicin accumulation for TSLs and HT compared to free
drug. They did not quantitatively assess intratumoral distribution pro-
files, but did note that TSLs combined with HT increased drug accumu-
lation in the centre of the tumor, whereas free doxorubicin
administered without HT accumulated solely in the rim. Similar work
in a rabbit VX2 tumor model was completed by Staruch et al. [417].
They noted an impressive 27-fold increase in doxorubicin tumor accu-
mulation for heated compared to non-heated tumors 2 h after
ThermoDox administration. Greater drug concentrations closer to ves-
sels were noted, but not quantified. In 2013, de Smet et al. measured
doxorubicin distribution in ex vivo tumor sections by fluorescence mi-
croscopy [418]. Doxorubicin delivered via TSLs and HT (42°C, 30 min)
was able to enter cells ~50 μm away from tumor vasculature. This was
farther than observed for TSLs without HT, and this effect was observed
up to 48 h following HT.

Similar to small molecule ChT, TSL-mediated drug delivery is en-
hanced by HT through increased perfusion. Additionally, intravascular
release creates high drug concentrations in blood vessels, potentially in-
creasing drug diffusion distances into the tumor interstitium. Manzoor
et al. completed what is probably the most thorough analysis to date
of the effect of HT on drug distribution in the tumor [372]. They
employed both window chamber models (B16-BL6 murine melanoma
tumors) and fluorescence microscopy analysis of histological sections
(human FaDu hypopharyngeal carcinoma implanted subcutaneously)
and compared the distribution of doxorubicin administered free or en-
capsulated within traditional or TSLs. Tumors were preheated and
then HTwas applied for 20min following intravenous drug administra-
tion at average temperatures of ~41.5 °C for bothmodels. Fig. 6 is a strik-
ing visual portrayal of the accumulation kinetics of free doxorubicin and
TSLs both with and without HT in the melanoma window chamber
model with blood vessels visualized in green. For free drug, rapid accu-
mulation and clearance within 5 min can be observed, with greater ac-
cumulation under HT. Very little drug leaves the vasculature for the TSL
treatment without HT, whereas drug concentration in the tumor inter-
stitium increases over the course of 20 min when HT is applied to
mice receiving TSLs. These results were quantitatively validated in 4 –
6 mice per treatment group. Histologic assessment of doxorubicin pen-
etration into the tumor interstitiumwas performed in the subcutaneous
hypopharyngeal model. The addition of HT was found to significantly
increase the median penetration distance of free doxorubicin from 29
to 55 μm. Doxil penetration was only measured with HT and was deter-
mined to be 34 μm, whereas TSLs combined with HT increased drug
penetration distance to 78 μm. It is worth noting that intravascular re-
lease generates sustained diffusion of free drug into the tumor intersti-
tium over the course of the HT treatment (Fig. 6), assuming the
pharmacokinetic half-life of the nanomedicine is sufficiently long. This
constant concentration gradient increases penetration of drug into the
tumor interstitium, resulting in increased penetration distances.

Increases in penetration distances from vessels are significant be-
cause the drug extravasates radially away from the blood vessel
accessing a large volume. For example, the volume fraction accessible
to drug extravasating from a 10 μm diameter capillary [419] increases
more than 3-fold when HT increases the penetration distance of free
doxorubicin from 29 to 55 μm (Fig. 7). The use of TSLs with HT repre-
sents a 2-fold increase in the accessible volume fraction compared to
free drug with HT.

The tumor accumulation and clearance kinetics of ChT delivered as
free drug or TSLs are relatively similar and differ greatly from traditional



Fig. 6. Confocal microscopy images demonstrating doxorubicin accumulation in tumors. Free doxorubicin or doxorubicin-containing TSLs were administeredwith andwithout HT (40.7 –
41.8 °C with 10 min heating prior to and 20 min following drug administration). Mice were implanted with dorsal skin-fold window chamber models of FaDu human squamous cell
carcinoma. Blood vessels containing fluorescein-labeled dextran (green), doxorubicin (red), and co-localization (yellow) indicate drug accumulation and clearance over 20 min. Scale
bar = 100 μm. Reprinted with permission from [372].

Fig. 7. Increased tumor region accessible to ChT as a result of HT. Schematic representation
of the tumor region accessed by drug when penetration distance from blood vessel
(diameter = 10 μm) increases from 29 μm (dark purple) to 55 μm (red) with the
application of HT (as reported for doxorubicin in Manzoor et al. [372]).
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nanomedicine drugs. Most free drugs are rapidly cleared from circula-
tion andmaximum tumor accumulation occurs within 0 – 2 h following
intravenous administration [372,420,421]. Drugs delivered via
thermosensitive carriers are released and accumulate within the
tumor primarily within the period of HT treatment that generally lasts
for 30 – 60 min [29]. Conversely, traditional long circulating
nanomedicines gradually accumulatewithin the tumor and are retained
longer. Maximum drug concentrations usually result around 24 – 72 h
following intravenous administration, depending on the half-life and
stability of the carrier and retention within the tumor [125]. It is there-
fore possible to envision the potential benefits of combining both
thermosensitive and non-thermosensitive nanomedicines in one treat-
ment regimen that incorporates HT. However, the authors are not
aware of any studies that have combined thermosensitive and tradi-
tional nanomedicines. It is hypothesized that the different temporal
and spatial drug distribution profiles resulting from delivery via tradi-
tional and thermosensitive nanomedicines would provide complemen-
tary therapeutic benefit to patients. Furthermore, HT should further
increase the fraction of the tumor to which both types of formulation
are able to deliver ChT. TSLs have a shorter half-life compared to non-
TSLs. However, a treatment plan involving co-administration is feasible.
TSL-mediated drug delivery is optimally achieved by heating the tumor
as quickly as possible following liposome administration (or pre-
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heating of the tumor). The reduction in tumor IFP and vascular changes
can benefit traditional nanomedicines after HT has ceased. Given the
known synergy between HT and RT as well as some ChT drugs and RT,
it is easy to see the benefit of incorporating RT into complex treatment
plans in order to provide further benefit to the patient.

HT can increase drug accumulation and distribution, improving ChT
efficacy.

9. Conclusion

There is still much research to be conducted in order to provide pa-
tients with optimized treatment plans that incorporate HT. While com-
bining HT with ChT or RT has been shown to improve patient outcomes
in some studies [12,13], other trials have been less conclusive [422]. The
tumor microenvironment exerts numerous negative influences on the
therapeutic efficacy of ChT and RT. Several factors that can be affected
byHT are discussed in this review. In lowpH tumormicroenvironments,
the cytotoxicity of ChT is often reduced. Low tumor pO2 significantly re-
duces the efficacy of RT and many forms of ChT. Elevated tumor IFP is a
major impediment to the effective delivery of nanomedicine ChT and
also reduces the efficacy of RT. HT treatment of tumors at temperatures
~39 – 42 °C can increase tumor blood flow and perfusion and can also be
used to trigger drug release from thermosensitive carriers. Increases in
HT-mediated blood flow can increase vascular permeability and reduce
IFP in tumors in which it is elevated. The combined effect of increases in
tumor blood flow, perfusion, and vascular permeability, along with de-
creased IFP can significantly increase drug accumulation and distribu-
tion within the tumor. The potential combination with HT-triggered
drug delivery systems can further enhance drug accumulation and dis-
tribution. These improvements are critical as ChT efficacy is primarily
governed by the temporal and spatial intratumoral drug distribution
with successful treatment dependent on treatment of all cancer cells
within the tumor. Furthermore, increased blood flow can remove acidic
metabolites and balance extracellular pH to more normal physiological
levels, potentially improving the efficacy of ChT that does reach the
tumor. RT efficacy can be significantly enhanced by the ability of HT to
increase tumor pO2 and decrease tumor IFP. Through increased delivery
of radiosensitizing molecules, HT can provide further benefit to RT.

HT can improve the overall efficacy of both ChT and RT in patients
with tumors that have low vascular permeability, lowpO2, low extracel-
lular pH, and/or high IFP. However, due to the difficulty involved in
assessing these tumor microenvironment parameters, they are not
used as inclusion criteria when enrolling patients in clinical trials in-
volvingHT. These trials are therefore not designed to optimize potential
clinical success. Inter-patient variability necessitates the inclusion of
personalized physiological information about the patient’s tumor (e.g.
perfusion characteristics, vascular permeability, IFP, pO2, and both pHi

and pHe) and their response to HT. Medical imaging is best able to pro-
vide a spatial map of these characteristics within the tumor volume,
allowing for patient stratification and assessing response to therapy.
The future of advanced drug delivery for cancer therapy is personalized
medicine that considers the genetic characteristics of the tumor when
selecting the most appropriate therapeutic agent. However, personal-
izedmedicinemust also entail understanding the biophysical character-
istics of the tumor. Imaging of these characteristics allows for the
rational integration of HT into treatment protocols in order to modulate
these biophysical characteristics to enhance ChT and RT and provide in-
dividual patients with optimal treatment regimens.
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